Design of Functional Polymer and Composite Scaffolds for the Regeneration of Bone, Menisci, Osteochondral and Peripheral Nervous Tissues

Article Preview

Abstract:

In order to mimic the behaviors of natural tissue, the optimal approach for designing novel biomaterials has to be inspired to nature guidelines. One of the major challenge consists in the development of well-organized structures or scaffolds with controlled porosity in terms of pore size, pore shape and interconnection degree able to guide new tissue formation during the in vivo degradation following the scaffold implantation. Scaffolds endowed with molecular cues together to a controlled degradation profile should contribute to cell proliferation and differentiation, controlled vascularization, promoting the remodeling of neo tissue through a gradual transmission of bio-chemicals and biophysical signals as performed by the extracellular matrix (ECM). Here, different polymers and composites have been investigated to design scaffolds with peculiar micro and/or nanometric morphological features in order to satisfy all these requirements: a) bioactive scaffolds, with tailored porosity and high pores interconnectivity were developed by integrating PLA fibres, Calcium Phosphates particles or Hyaff11 phases into a Poly(ε-caprolactone) (PCL) matrix by the combination of filament winding technology and phase inversion/salt leaching technique as mineralised ECM analogue for bone regeneration; b) custom made PCL/hydroxyapatite scaffolds were designed by imaging and rapid prototyping technologies for the osteochondral defect. c) Ester of Hyaluronic Acid reinforced with degradable fibres were processed by composite technology, phase inversion and salt leaching technique, to obtain scaffolds for meniscus regeneration. d) PCL and gelatin nanofibres were obtained by highly customized fibre deposition via electrospinning to guide the nerve outgrowth in nerve regeneration. All the proposed approaches offer the chance of realizing tailor-made platforms with micro/nanoscale architecture and chemical composition suitable for the regeneration of the extracellular matrix of a large variety of natural tissues (i.e, bone, menisci, osteochondral and peripheral nervous tissues).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-13

Citation:

Online since:

August 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Guarino and L. Ambrosio: Proc Inst Mech Eng H: J Eng Med 224(12) (2010), p.1389.

Google Scholar

[2] V. Guarino, F. Causa and L. Ambrosio: J Appl Biomater & Biomech 5(3) (2007), p.149.

Google Scholar

[3] A. Gloria, R. De Santis and L. Ambrosio: J Appl Biomater & Biomech 8 (2010), p.57.

Google Scholar

[4] V. Guarino, F. Causa, A. Salerno, L. Ambrosio and P.A. Netti: Mat. Sci. Tech 24(9) (2008), p.1111.

Google Scholar

[5] V. Guarino, F. Causa and L. Ambrosio: Exp Rev Med Dev 4(3) (2007) p.405.

Google Scholar

[6] V. Guarino, F. Causa, P.A. Netti, G. Ciapetti, S. Pagani, D. Martini, N. Baldini and L. Ambrosio: J Biomed Mat Res. Part B: App. Biomat. 86B (2008), p.548.

DOI: 10.1002/jbm.b.31055

Google Scholar

[7] V. Guarino, P. Taddei, M. Di Foggia, C. Fagnano, G. Ciapetti and L. Ambrosio: Tissue Eng Part A, 15(11) (2009), p.3655.

DOI: 10.1089/ten.tea.2008.0543

Google Scholar

[8] M.G. Raucci, V. Guarino and L. Ambrosio: Comp. Sci. & Tech. 70 (2010), p.1861.

Google Scholar

[9] M.G. Raucci, V. D'Antò, V. Guarino, E. Sardella, P. Favia and L.Ambrosio: Acta Biomater 6(10) (2010), p.4090.

Google Scholar

[10] V. Guarino, F. Causa, P. Taddei, M. Di Foggia, G. Ciapetti, D. Martini, C. Fagnano, N. Baldini and L. Ambrosio: Biomaterials 29 (2008), p.3662.

DOI: 10.1016/j.biomaterials.2008.05.024

Google Scholar

[11] V. Guarino and L. Ambrosio: Acta Biomater Vol. 4(6) (208), pp.1778-87.

Google Scholar

[12] V. Guarino, M. Lewandowska, M. Bil, B. Polak and L. Ambrosio: Comp. Sci. Tech. Vol.70 (2010), p.1826.

Google Scholar

[13] V.C. Mow, G.A. Ateshian and R.L. Spilker: J. Biomech. Eng. 115 (4B) (1993), p.460.

Google Scholar

[14] W. Swieszkowski, B.H.S. Tuan, K. J. Kurzydlowski and D. W. Hutmacher: Biomol Eng Vol. 24 (2007), p.489.

Google Scholar

[15] S.N. Redman, S.F. Oldfield and C.W. Archer: Eur. Cell. Mater. 9 (2005), p.23.

Google Scholar

[16] D.W. Jackson, M.J. Scheer and T.M. Simon: J. Am. Acad. Orthop. Surg. 9 (2001), p.37.

Google Scholar

[17] M.A. Wirth, C.A. Rockwood Jr: Clin. Orthop. Relat. Res. 307 (2004), p.47.

Google Scholar

[18] A. Gloria, T. Russo, R. De Santis and L. Ambrosio: J Appl Biomater Biomech 7 (2009), pp.141-52.

Google Scholar

[19] A. Pastorello, L. Ambrosio, G. Tafuri and A. Pavesio: US Patent, WO 2006/066003.

Google Scholar

[20] C. Chiari, U. Koller, R. Dorotka, C. Eder, R. Plasenzotti, S. Lang, L. Ambrosio, E. Tognana, E. Kon, D. Salter and S. Nehrer: OsteoArthritis & Cartilage 14 (2006), p.1056.

DOI: 10.1016/j.joca.2006.04.007

Google Scholar

[21] Kon, C. Chiari, M. Marcacci, M. Delcogliano, D.M. Salter, I. Martin, L. Ambrosio, M. Fini, M. Tschon, E. Tognana, R. Plasenzotti, S. Nehrer: Tissue Eng A. 14(6) (2008), p.1067

DOI: 10.1089/ten.tea.2007.0193

Google Scholar

[22] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M Morshed, M.H. Nasr-Esfahani, S. Ramakrishna: Biomaterials Vol. 29 (2008), p.4532.

DOI: 10.1016/j.biomaterials.2008.08.007

Google Scholar

[23] M.P. Prabhakaran, J. Venugopal, T.T. Chyan, L.B. Hai, C.K. Chan, A.L. Yu-Tang and S. Ramakrishna, Tissue Eng. A 14 (2008) p.1.

Google Scholar

[24] M.A. Alvarez-Perez, V. Guarino, V. Cirillo, L.Ambrosio: Biomacromolecules 11(9) (2010), p.2238.

Google Scholar