The Synthesis and Characterization of the Graphene Oxide Covalent Modified Phenolic Resin Nanocomposites

Article Preview

Abstract:

Graphene oxide (GO) was made by a modified Hummers method. Graphene oxide modified phenolic resin nanocomposites (GO/PF) were prepared by Steglich esterification, catalyzed by dicyclohexyl carbodiimide and 4-dimethylaminopyridine. The composites were characterized by Fourier transform infrared spectrometry, differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. The result revealed that the graphene oxide was absolutely exfoliated and covalent linked GO/PF composite was obtained. The thermal stability of PF is remarkably improved by modification with GO.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-119

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.L. Wang, Q.L. Hao, X.J. Yang, et al. Electrochem Commun, 2009, 11(6): 1158.

Google Scholar

[2] K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Science, 2004, 306: 666.

Google Scholar

[3] B. C. Brodie, Ann. Chim. Phys. 1855(45): 351.

Google Scholar

[4] L. Staudenmaier, D. Ber. Chem. Ges. 1898(31): 1484.

Google Scholar

[5] W. S. Hummers, R. E. ffeman. J. Am. Chem. Soc. 1958(80): 1339.

Google Scholar

[6] T. Ramanathan, A. A. Abdala, S. Stankovich, et al. Nature Nanotechnology, 2008, 3(6): 327.

Google Scholar

[7] B. Das, K. E. Prasad, U. Ramamurty, et al. Nanotechnology, 2009, 20( 12): 125705.

Google Scholar

[8] M. J. Hudson, F. R. Hunter, J. W. Peckett, et al. J. Mater. Chem. 1997, 7(2): 301.

Google Scholar

[9] J. S. Horacio, A. G. Marian and M. Gerardo. Macromolecules, 2009, 42(17): 6331.

Google Scholar

[10] J. Y. Huang, M. Q. Xu, Q. Ge. Journal of Applied polymer Science, 2005, 97, 652.

Google Scholar

[11] R. Lubczak. [J]. Macromol. Mater. Eng. 2003, 288, 66.

Google Scholar

[12] A. Matsumoto, K. Hasegawa, A. Fukuda, et al. J. Appl. Polym. Sci. 1991, 43, 365.

Google Scholar

[13] A. Matsumoto, K. Hasegawa, A. Fukuda, et al. J. Appl. Polym. Sci. 1991, 43, 205.

Google Scholar

[14] A. Matsumoto, K. Hasegawa, A. Fukuda, et al, J. Appl. Polym. Sci. 1991, 43, 1547.

Google Scholar

[15] Jay, R. L.; Condell, D. D.; Dmitry, V. K. J. Am. Chem. Soc. 2008, 130 , 16201.

Google Scholar

[16] Szabo, T.; Berkesi, O.; Dekany, I. Carbon. 2005, 43, 3186.

Google Scholar

[17] C. Xu, X. Wu, J. Zhu, X. Wang. Carbon, 2007, 46, 386.

Google Scholar

[18] Y. Matsuo, Y. Nishino, T. Fukutsuka, Y. Sugie. Carbon. 2007, 45, 1384.

Google Scholar

[19] Y. Z. Su, C.B. Liu, R. F. Zhang, Y. F. Xian. Journal of Guang zhou Normal University. 2000, 21, 55.

Google Scholar

[20] D. A. Dikin, S. Stankovich, E. J. Zimney, et al. Nature. 2007, 448, 457.

Google Scholar

[21] Y. X. Xu, H. Bai, G. W. Lu, C. Li, G. Q. Shi. J. Am. Chem. Soc. 2008, 130, 5856.

Google Scholar