Influence of Shape of Region of Interest on the Architectural Parameters in Micro CT Image Analysis

Article Preview

Abstract:

To study whether the architectural parameters are sensitive to the shape of volume of interests in micro-CT scanning, six human C5 body samples were scanned by micro-CT. Cubic and cylindrical volumes of interests were acquired as the length of cubic samples was being changed continually. The nonlinear curve fitting method was employed to explore the correlation between the parameters and the volume of interests. The selected morphological indices showed a significantly variable tendency for the lengths of cubic and cylindrical regions of interests, except the Tb.Th and BS/BV. The Dunnett-t tests were performed to compare the architectural parameters of different region of interests against that of control group. There was no significant difference observed between the architectural parameters from cubic region of interests and that from the cylindrical region of interests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-247

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Jiang, et al., Application of micro-CT assessment of 3-D bone microstructure in preclinical and clinical studies, J Bone Miner Metab, vol. 23 Suppl, pp.122-31, (2005).

DOI: 10.1007/bf03026336

Google Scholar

[2] D. Dagan, et al., Single-trabecula building block for large-scale finite element models of cancellous bone, Med Biol Eng Comput, vol. 42, pp.549-56, Jul (2004).

DOI: 10.1007/bf02350998

Google Scholar

[3] G. H. van Lenthe, et al., Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties, Bone, vol. 39, pp.1182-9, Dec (2006).

DOI: 10.1016/j.bone.2006.06.033

Google Scholar

[4] Z. X. Wu, et al., Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model, Med Eng Phys, vol. 30, pp.1112-8, Nov (2008).

DOI: 10.1016/j.medengphy.2008.01.007

Google Scholar

[5] X. S. Liu, et al., Contributions of trabecular rods of various orientations in determining the elastic properties of human vertebral trabecular bone, Bone, vol. 45, pp.158-63, Aug (2009).

DOI: 10.1016/j.bone.2009.04.201

Google Scholar

[6] H. S. Kim and S. T. Al-Hassani, A morphological model of vertebral trabecular bone, J Biomech, vol. 35, pp.1101-14, Aug (2002).

Google Scholar

[7] E. F. Morgan, et al., Trabecular bone modulus-density relationships depend on anatomic site, J Biomech, vol. 36, pp.897-904, Jul (2003).

DOI: 10.1016/s0021-9290(03)00071-x

Google Scholar

[8] H. J. Grote, et al., Intervertebral variation in trabecular microarchitecture throughout the normal spine in relation to age, Bone, vol. 16, pp.301-8, Mar (1995).

DOI: 10.1016/8756-3282(94)00042-5

Google Scholar

[9] Y. N. Yeni, et al., Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture, Bone, vol. 42, pp.591-6, Mar (2008).

DOI: 10.1016/j.bone.2007.11.011

Google Scholar

[10] P. A. Hulme, et al., Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength, Bone, vol. 41, pp.946-57, Dec (2007).

DOI: 10.1016/j.bone.2007.08.019

Google Scholar

[11] E. Perilli, et al., Structural parameters and mechanical strength of cancellous bone in the femoral head in osteoarthritis do not depend on age, Bone, vol. 41, pp.760-8, Nov (2007).

DOI: 10.1016/j.bone.2007.07.014

Google Scholar

[12] P. Mc Donnell, et al., Simulation of vertebral trabecular bone loss using voxel finite element analysis, J Biomech, vol. 42, pp.2789-96, Dec 11 (2009).

DOI: 10.1016/j.jbiomech.2009.07.038

Google Scholar

[13] N. Otsu, A threshold selection method from gray-level histograms, IEEE Trans. Systems, Man, and Cybernetics, vol. 9, pp.62-66, (1979).

DOI: 10.1109/tsmc.1979.4310076

Google Scholar

[14] W. S. Siu, et al., A study of trabecular bones in ovariectomized goats with micro-computed tomography and peripheral quantitative computed tomography, Bone, vol. 35, pp.21-6.

DOI: 10.1016/j.bone.2004.03.014

Google Scholar

477±0. 025.

Google Scholar

[17] 500±3. 383.

Google Scholar

114±0. 017.

Google Scholar

[4] 137±0. 372.

Google Scholar

177±0. 026* (2mm)3.

Google Scholar

338±0. 025.

Google Scholar

[18] 120±2. 712.

Google Scholar

113±0. 017.

Google Scholar

[3] 060±0. 380.

Google Scholar

218±0. 028* (3mm)3.

Google Scholar

315±0. 031.

Google Scholar

[18] 700±3. 151.

Google Scholar

110±0. 016.

Google Scholar

[2] 920±0. 277.

Google Scholar

235±0. 025* (4mm)3.

Google Scholar

305±0. 026.

Google Scholar

[18] 780±2. 877.

Google Scholar

110±0. 014.

Google Scholar

[2] 840±0. 264.

Google Scholar

245±0. 024* (5mm)3.

Google Scholar

293±0. 017.

Google Scholar

[19] 130±2. 746.

Google Scholar

108±0. 013.

Google Scholar

[2] 770±0. 266.

Google Scholar

258±0. 022 (6mm)3.

Google Scholar

273±0. 017.

Google Scholar

[19] 673±2. 615.

Google Scholar

103±0. 010.

Google Scholar

[2] 655±0. 264.

Google Scholar

275±0. 025 (7mm)3.

Google Scholar

255±0. 024.

Google Scholar

[19] 965±2. 627.

Google Scholar

100±0. 014.

Google Scholar

[2] 533±0. 149.

Google Scholar

295±0. 017 (8mm)3.

Google Scholar

253±0. 022.

Google Scholar

[20] 090±2. 704.

Google Scholar

100±0. 014.

Google Scholar

[2] 508±0. 131.

Google Scholar

300±0. 016 (9mm)3.

Google Scholar

253±0. 022.

Google Scholar

[20] 115±2. 809.

Google Scholar

098±0. 013.

Google Scholar

[2] 528±0. 144.

Google Scholar

300±0. 022 (10mm)3.

Google Scholar

258±0. 026.

Google Scholar

[19] 950±2. 985.

Google Scholar

107±0. 016.

Google Scholar

[2] 553±0. 134.

Google Scholar

298±0. 021 Total volume^.

Google Scholar

254±0. 023.

Google Scholar

[20] 06±2. 822.

Google Scholar

101±0. 014.

Google Scholar

[2] 518±0. 136.

Google Scholar

299±0. 019 *P<0. 05 for comparison to the control group Values were calculated using the software of MicroView (Healthcare Explore Locus, GE Medical Systems, Milwaukee, USA). ^Dunnett-t test was used, where the parameters of total volume were from the control group. Table 2. Mean and SD values for the micro-architectural parameters in Cylindrical ROIs BV/TV(1) BS/BV(1/mm) Tb. Th(mm) Tb. N(1) Tb. Sp(mm) (1mm)3.

DOI: 10.7717/peerj.10036/table-4

Google Scholar

417±0. 038.

Google Scholar

[17] 248±3. 158.

Google Scholar

126±0. 018.

Google Scholar

[3] 598±0. 254.

Google Scholar

162±0. 023* (2mm)3.

Google Scholar

318±0. 037.

Google Scholar

[17] 489±3. 186.

Google Scholar

117±0. 021.

Google Scholar

[2] 878±0. 181.

Google Scholar

236±0. 022* (3mm)3.

Google Scholar

316±0. 029.

Google Scholar

[17] 315±3. 066.

Google Scholar

115±0. 020.

Google Scholar

[2] 734±0. 213.

Google Scholar

253±0. 021* (4mm)3.

Google Scholar

291±0. 033.

Google Scholar

[18] 546±3. 339.

Google Scholar

114±0. 015.

Google Scholar

[2] 755±0. 191.

Google Scholar

278±0. 020 (5mm)3.

Google Scholar

276±0. 026.

Google Scholar

[18] 69±3. 185.

Google Scholar

112±0. 008.

Google Scholar

[2] 740±0. 173.

Google Scholar

287±0. 019 (6mm)3.

Google Scholar

263±0. 027.

Google Scholar

[18] 067±2. 218.

Google Scholar

111±0. 010.

Google Scholar

[2] 673±0. 140.

Google Scholar

291±0. 019 (7mm)3.

Google Scholar

252±0. 023.

Google Scholar

[19] 377±2. 670.

Google Scholar

109±0. 016.

Google Scholar

[2] 615±0. 160.

Google Scholar

293±0. 019 (8mm)3.

Google Scholar

249±0. 022.

Google Scholar

[19] 503±2. 969.

Google Scholar

108±0. 014.

Google Scholar

[2] 602±0. 164.

Google Scholar

296±0. 018 (9mm)3.

Google Scholar

250±0. 020.

Google Scholar

[20] 525±2. 428.

Google Scholar

108±0. 013.

Google Scholar

[2] 520±0. 130.

Google Scholar

301±0. 018 (10mm)3.

Google Scholar

252±0. 025.

Google Scholar

[20] 415±2. 340.

Google Scholar

108±0. 013.

Google Scholar

[2] 481±0. 112.

Google Scholar

303±0. 018 Total volume^.

Google Scholar

254±0. 023.

Google Scholar

[20] 06±2. 822.

Google Scholar

101±0. 014.

Google Scholar

[2] 518±0. 136.

Google Scholar

299±0. 019 *P<0. 05 for comparison to the control group Values were calculated using the software of MicroView (Healthcare Explore Locus, GE Medical Systems, Milwaukee, USA). ^Dunnett-t test was used, where the parameters of total volume were from the control group. Figure. 1 The different shape of ROIs. Figure. 2 Architectural parameters of different shapes with continous changing lengths.

Google Scholar