The Enhanced Cu2+- Stress Resistance of Microcystis Aeruginosa Induced by Exogenous Abscisic Acid

Article Preview

Abstract:

Previous studies showed that abscisic acid (ABA) play a role in oxidative and osmotic stress response of cyanobacteria cells. Whether it has function in metal stress response remains unclear. The effect of exogenous Abscisic Acid on Cu2+ -Stress resistance of bloom-forming cyanobacteria Microcystis aeruginosa was studied in this paper. The results showed that 20 mg. l-1 exogenous ABA can effectively enhance the resistance ability of Microcystis aeruginosa cells to Cu2+-stress at the concentration of 0.25 mg.l-1. Exogenous ABA can restore the growth inhibition by elevating chlorophyll a, phycocyanin and allophycocyanin protein content in Cu2+ -stressed cells. ABA helps absorbing more metal ions to decrease its toxicity by inducing solvable protein and cellular polysaccharides biosynthesis. By promoting the Superoxide Dismutase and Glutathione Peroxidase activities, exogenous ABA can effectively help scavenge the excess superoxide radicals in the cells caused by Cu2+ -Stress. These results indicated that ABA might also play important role in metal-stress response and resistance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

1229-1235

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] BTA. Bossuyt, CR. Janssen, Aquat Toxicol, vol. 68, no. 5, pp.61-74, (2004).

Google Scholar

[2] W.W. Carmichael. Sci. Am,. Vol. 1, pp.64-72, (1994).

Google Scholar

[3] KS. Choo, P. Snoeijs, M. Pedersén, , J. Exp. Mar. Biol. Ecol., Vol. 298, pp.111-123, (2004).

Google Scholar

[4] R. De Philippis, M. Vincenzini. FEMS Microbiology Reviews, vol. 22, pp.151-157, (1998).

Google Scholar

[5] L. García-Villada, M. Rico, M Altamirano, L. Sánchez-Martín, V. López-Rodas, E. Costas. Water Res, vol. 38, no. 4, pp.2207-2213, (2004).

DOI: 10.1016/j.watres.2004.01.036

Google Scholar

[6] D. Gonzalez, M. Santana-Casiano, J.M. Perez-Pena, J., Millero, F.J., Environ. Sci. Technol, vol. 29, pp.289-301, (1995).

DOI: 10.1021/es00002a004

Google Scholar

[7] A. Gupta, GS. Singhal. Environ. Exp. Bot, vol. 35, p.435–439, (1995).

Google Scholar

[8] H. Huddart, RJ. Smith, PD. Langton, A.M. Hetherington, TA. Mansfield. New Phytol, vol. 104, p.161–173, (1986).

DOI: 10.1111/j.1469-8137.1986.tb00643.x

Google Scholar

[9] S. Hrudey, S. Burch, M. Burch, M. Drikas, R. Greorgy. Toxic Cyanobacteria in Water. A Guide to their Public Health Consequences, Monitoring and Management, SponPress, pp.275-312, March, (1999).

Google Scholar

[10] JW. Joshua, CP. Francis, FV. Brian, RC. Sean. Current Opinion in Plant Biology, vol. 13, no. 5, pp.495-502, October, (2010).

Google Scholar

[11] T. Jurriaan, F. Victor and MM. Brigitte., Trends in Plant Science, vol. 14, no. 6:, pp.310-317, June 2009.

Google Scholar

[12] D. Kaplan, D. Christiaen, S. Arad. Algal Biotechnology, Elsevier, London, pp.179-187, (1988).

Google Scholar

[13] Y. Kenji. The Pharmaceutical Society of Japan, vol. 125, no. 12, pp.927-936., December. (2005).

Google Scholar

[14] G. B Li, Y. D Liu, G.H. Wang, L.R. Song. Acta Astronaut, vol. 55, no. 11, pp.953-957, December. (2004).

Google Scholar

[15] B. Marsálek, M. Simek, Folia Microbiol, vol. 37, no. 2, p.159–160, (1992).

Google Scholar

[16] DM. McKnight, SW. Chisholm, DRF. Harleman. Environ Manage, no. 7, pp.311-320, (1983).

Google Scholar

[17] J. W. Moffett, L.E. Brand, R.G. Zika. Deep-Sea Res, vol. 37, pp.27-36, (1990).

Google Scholar

[18] OK Okamoto, P, Colepicolo, Biochem. Physiol, vol. 119, no. 1, pp.67-73, January. (1998).

Google Scholar

[19] PK. Pandey, BB. Singh, R. Mishra, PS. Bisen. Curr Microbiol, vol. 32, no. 6, p.332–335., June. (1996).

Google Scholar

[20] E. Pinto. J. Phycol, vol. 39, no. 6, pp.1008-1018, (2003).

Google Scholar

[21] R. Rippka, J. Deruelles, J.B. Waterbury, M. Herdman, R.Y. Stanier. J Gen Microbiol, vol. 111, pp.1-61., (1979).

Google Scholar

[22] C.S. Reynolds, A.E. Walsby. Water blooms. Biol. Res, vol. 50, pp.437-481, (1975).

Google Scholar

[23] LB. Sheard, N. Zheng, Nature, vol. 462, no. 7273, pp.575-576., December. (2009).

Google Scholar

[24] K. Sivonen. Phycologia, vol. 35, no. 6, pp.12-24., (1996).

Google Scholar

[25] M.S.D. Teresa, M. Vasconcelos, C. Fernanda, A. Leal, M.G., Constant. Mar. Chem., vol. 77, p.187–210, (2002).

Google Scholar

[26] J. Ton, V. Flors, B. Mauch-Mani, Trends in Plant Science, no. 14, pp.310-317, (2009).

DOI: 10.1016/j.tplants.2009.03.006

Google Scholar

[27] ZX. Wu, NQ. Gan, Q. Huang, LR. Song, Environmental Pollution, vol. 147, pp.324-330., (2007).

Google Scholar

[28] I. Yruela, M. Alfonso, M. Barón, R. Picorel. Physiol. Plant, vol 110, pp.551-557., (2000).

Google Scholar

[29] H. Zahardnickova, B. Marsálek, M. Polisenska. J Chromatog, vol. 555, p.239–245, (1991).

Google Scholar