Classification, Substrate Specificity and Application of α-Galactosidases

Article Preview

Abstract:

Galactose is found in many oligosaccharides, galactomannans, glycoproteins and glycolipids, which are widely distributed in plants microorganisms and animals. α-Galactosidase (α-Gal) catalyzes the hydrolysis of 1,6-linked α-galactosyl residues and transgalactosylation. α-Gals are classified into four glycoside hydrolases families (GH): 4, 27, 36 and 57. The majority of known α-Gals belongs to GH families 27 and 36.α-Gals are of particular interest in view of their biotechnological applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

1222-1228

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Henrissat, A. Bairoch, New families in the classification of glycosidase based on amino acid sequence similarities, Biochem. J., vol. 293, pp.781-788, (1993).

DOI: 10.1042/bj2930781

Google Scholar

[2] B. Henrissat, A. Bairoch, Updating the sequence-based classification of glycosyl hydrolases, Biochem. J., vol. 316, pp.695-696, (1996).

DOI: 10.1042/bj3160695

Google Scholar

[3] B. Henrissat, A. Romeu, Families, superfamilies and subfamilies of glycosyl hydrolases, Biochem. J., vol. 311, pp.351-352. (1995).

DOI: 10.1042/bj3110350

Google Scholar

[4] W. D. Kim, S. Kaneko, G. G. Park, H. Tanaka, Purification and characterization of α-galactosidase from sunflower seeds, Biotechnol. Lett. Vol. 25, pp.353-358, (2003).

Google Scholar

[5] S. Li, , W. D. Kim, S. Kaneko, et al,. Expression of rice (Oryza sativa L. var. Nipponbare) α-galactosidase genes in Escherichia coli and characterization, Biosci. Biotechnol. Biochem., vol. 71, pp.520-526. (2007).

DOI: 10.1271/bbb.60554

Google Scholar

[6] C. Soh, Z. M. Ali, and H. Lazan. Characterisation of an α-galactosidase with potential relevance to ripening related texture changes, Phytochemistry, vol. 67, pp.242-254, (2006).

DOI: 10.1016/j.phytochem.2005.09.032

Google Scholar

[7] A.I. Guce, N.E. Clark, E. N. Salgado, et al, Catalytic Mechanism of Human α-Galactosidase, J. Biol. Chem., vol. 285, pp.3625-3632. (2010).

Google Scholar

[8] Luonteri E, Tenkannen M, Viikari L, Substrate specificities of Penicillium simplicissimum α-galactosidases., Enzyme Microb. Technol. , vol. 22, pp.192-198. (1998).

DOI: 10.1016/s0141-0229(97)00170-1

Google Scholar

[9] Timell TE, Recent progress in the chemistry of wood hemicelluloses, Wood Sci. Technol., vol. 1, pp.45-70. (1967).

DOI: 10.1007/bf00592255

Google Scholar

[10] Aspinall TE , Pectic plant gums and other plant polysaccharides, Carbohydrates, Vol. IIB pp.515-536. (1970).

DOI: 10.1016/b978-0-12-556352-9.50009-3

Google Scholar

[11] A. Yamashita, H. hashimoto, K. Fujita, et al, Reverse reaction of Aspergillus niger APC-9319 α-galactosidase in a supersaturated substrat solution: production of α-linked galactooligosaccharide (α-GOS), Biosci. Biotechnol. Biochem., vol. 69, pp.1381-1388, (2005).

DOI: 10.1271/bbb.69.1381

Google Scholar

[12] V. Puchart, M. Vrsanska, K. B. Mahakingeshwara, et al, Purification and characterization of α-galactosidase from a thermophilic fungus, Themomyces lanuginosus. Biochem. Biophys. Acta, vol. 1524, pp.27-37. (2000).

DOI: 10.1016/s0304-4165(00)00138-0

Google Scholar

[13] B. Chrost, K. Krupinska, Gene with homologies to known α-galactosidases are expressed during senescence of barley leaves, , Physiol. Plant, vol. 110, pp.111-119. (2000).

DOI: 10.1034/j.1399-3054.2000.110115.x

Google Scholar

[14] E. C. Dierking, K. D. Bilyeu, Raffinose and stachyose metabolism are not required for efficient soybean seed germination, J Plant Physiol., vol. 166, pp.1329-1335, (2009).

DOI: 10.1016/j.jplph.2009.01.008

Google Scholar

[15] J.D. Bewley, M. Black, Mobilization of stored seed reserves, Seed physiology of development and germination. vol. 7, pp.253-303. (1985).

DOI: 10.1007/978-1-4615-1747-4_7

Google Scholar

[16] R. Kaneko, I. Kusakabe, Y. Sakai, K. Murakami, Substrate specificity of α-galactosidase from Mortierella vinacea, Agric. Biol. Chem. , vol. 54, pp.237-238, (1990).

DOI: 10.1080/00021369.1990.10869898

Google Scholar

[17] S. Yoshida, C. H. Tan, T. Shimokawa, et al, Substrate specificity of a-galactosidase from yeasts, Biosci. Biotechnol. Biochem., vol. 61, pp.359-361, (1997).

Google Scholar

[18] R. Kaneko, I. Kusakabe, E. Ida, et al. Substrate specificity of α-galactosidase from Aspergillus niger 5-16, Agric. Biol. Chem. , vol. 55, pp.109-115, (1991).

DOI: 10.1271/bbb1961.55.109

Google Scholar

[19] H. Shibuya, H. Kobayashi, G.G. Park, et al., Purification and some properties of α-galactosidase from Penicillium purpurogenum, Biosci. Biotechnol. Bioche,. vol. 59, pp.2333-2335, (1995).

DOI: 10.1271/bbb.59.2333

Google Scholar

[20] H. Shibuya, H. Kobayashi, T. Sato, et al., Purification, characterization, and cDNA cloning of a novel α-galactosidase from Mortierella vinace, Biosci. Biotechnol. Biochem., vol. 61, pp.592-598, (1997).

Google Scholar

[21] P.R. Gaudreault, J.A. Webb, Alkaline α-galactosidase in leaves of Cucurbita pep, Plant Sci. Lett., vol. 24, pp.281-288, (1982).

DOI: 10.1016/0304-4211(82)90023-2

Google Scholar

[22] Z. Gao, A. A. Schaffer, A novel α-galactosidase from melon fruit with substrate preference for raffinose, Plant Phsiol. , vol. 119, pp.979-988, (1999).

DOI: 10.1104/pp.119.3.979

Google Scholar

[23] G.H. Lee, J. H. Hsu , H. J. Huang, et al. Alkaline alpha-galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice, New Phytol., vol. 84, pp.596-606, (2009).

DOI: 10.1111/j.1469-8137.2009.02999.x

Google Scholar

[24] K. Kondoh, K. Morisaki, W. D. Kim, et al, Cloning and expression of the gene encoding Streptomyces coelicolor A3(2) a-galactosidase belonging to family 36, Biotechnol. Lett., vol. 27, p.641–647, (2005).

DOI: 10.1007/s10529-005-3660-2

Google Scholar

[25] L. A. M. van den Broek, J. Ton, J. C. Verdoes, et al, Synthesis of α-galacto-oligosaccharides by a cloned α-galactosidase from Bifidobacterium adolescentis, Biotechnol. Lett., vol. 21, pp.441-445, (1999).

Google Scholar

[26] G. Theodoros, G. Athanasios, T. George, et al, A novel α-galactosidase from Bifidobacterium bifidum with transgalactosylating properties: gene molecular cloning and heterologous expression, Appl Microbiol Biotechnol., vol. 82, pp.471-477, (2009).

DOI: 10.1007/s00253-008-1750-5

Google Scholar

[27] T. Peterbauer, A. Richter, Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds, Seed Sci. Res., vol. 11, pp.185-197, (2001).

Google Scholar

[28] T. Peterbauer, J. Mucha, L. Mach, et al. Chain-enlongation of raffinose in pea seeds. Isolation, characterization, and molecular cloning of multifunctional enzyme catalyzing the synthesis of stachyose and verbascose, J. Biol. Chem., vol. 277, pp.194-200, (2002).

DOI: 10.1074/jbc.m109734200

Google Scholar

[29] S. Peters, A. Egert, B. Stieger, F. Keller, Functional identification of Arabidopsis ATSIP2 (At3g57520) as an alkaline α-galactosidase with a substrate specificity for raffinose and an apparent sink-specific expression pattern, Plant Cell Physiol., vol. 51, pp.1815-1819, (2010).

DOI: 10.1093/pcp/pcq127

Google Scholar

[30] S. Li, T. Li, W.D. Kim, et al, Characterization of raffinose synthase from rice (Oryza sativa L. var. Nipponbare), Biotechnol Lett., vol. 29, pp.635-40, (2007).

DOI: 10.1007/s10529-006-9268-3

Google Scholar

[31] N. Sprenger, F. Keller, Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of distinct galactinol synthases, Plant J., vol. 21. pp.249-258, (2000).

DOI: 10.1046/j.1365-313x.2000.00671.x

Google Scholar

[32] M. Esther, L. Tapernoux, B. Andreas, et al, Cloning, functional expression, characterization of the raffinose oligosaccharide chain elongation enzyme, galactan: galactan galactosyltransferase, from common bugle leaves. , Plant Physiol., vol. 234, pp.1377-1387, (2004).

DOI: 10.1104/pp.103.036210

Google Scholar

[33] N. Carmi, G. Zhang, M. Petreilkov, et al, Cloning and functional expression of alkaline α-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases, Plant J., vol. 33, pp.97-106. (2003).

DOI: 10.1046/j.1365-313x.2003.01609.x

Google Scholar

[34] J. Robert, D. C. Redgwell, R. John, et al, Changes to the galactose/mannose ratio in galactomannans during coffee bean (Coffea arabica L. ) development: implications for in vivo modification of galactomannan synthesis, Planta, vol. 217, p.316–326, (2003).

DOI: 10.1007/s00425-003-1003-x

Google Scholar

[35] B. V. Mc Cleary, J. Neukom, Effect on enzymic modification on the solution and interaction properties of galactomannan, Prog. Food Nutr. Sci , vol. 6, pp.109-118. (1982).

Google Scholar

[36] J.H. Clarke, K. Davidson, J.E. Rixon, et al, A comparison of enzyme-aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and α-galactosidase, Appl. Microbiol. Biotechnol., vol. 53, pp.661-667, (2000).

DOI: 10.1007/s002530000344

Google Scholar

[37] Kotiguda, Girigowda, S. Shankar. et al, Degradation of Raffinose Oligosaccharides in Soymilk by Immobilized α-Galactosidase of Aspergillus oryzae, J. Microbiol. Biotechnol., vol. 17, p.1430–1436, (2007).

Google Scholar

[38] B. A. Oyofo, R.E. Droleskey, J.O. Norman, Inhibition by mannose of in vitro colonization of chicken small intestine by Salmonella typhimurium, Poultry Sci., vol. 68, pp.1351-1356, (1989).

DOI: 10.3382/ps.0681351

Google Scholar

[39] D. P. Germain, Fabry disease, Orphanet J. Rare Dis., vol. 5, p.30. (2010).

Google Scholar

[40] Y. X Tan, S. B Li, J. X Wang, et al, Comparison of modification of surface xenoantigens on bovine and porcine erythrocytes, Zhongguo Shi Yan Xue Ye Xue Za Zhi., vol. 5, pp.878-82, (2005).

Google Scholar

[41] K. Hara, K. Fujita, N. Kuwahara, et al, Galactosylation of cyclodextrins and branched cyclodextrins by α-galactosidases, Biosci. Biotech. Biochem., vol. 58, pp.652-659, (1994).

DOI: 10.1271/bbb.58.652

Google Scholar