[1]
R. Johnson, et al, Growing concerns and recent outbreaks involving non-O157: H7 serotypes of verotoxigenic Escherichia coli, Journal of Food Protection, vol. 59, no10. , p.1112–1122, (1996).
DOI: 10.4315/0362-028x-59.10.1112
Google Scholar
[2]
J.C. Paton, A.W. Paton, Pathogenesis and diagnostics of Shiga-toxin producing Escherichia coli infection, Clinical Microbiology Reviews, vol. 11, no 3. , pp.450-479, (1998).
DOI: 10.1128/cmr.11.3.450
Google Scholar
[3]
S.M. Parry, S.R. Palmer, The public health significance of VTEC O157, Journal of Applied Microbiology, vol. Symposium Supplement 88, pp. 1S–9S, (2000).
DOI: 10.1111/j.1365-2672.2000.tb05326.x
Google Scholar
[4]
JL. Lee, RE. Levin, Discrimination of viable and dead Vibrio vulnificus after refrigerated and frozen storage using EMA, sodium deoxycholate and real-time PCR, Journal of Microbiology Methods, vol. 79, no 2, pp.184-188, (2009).
DOI: 10.1016/j.mimet.2009.08.014
Google Scholar
[5]
H. Rawsthorne, TG. Phister, Detection of viable Zygosaccharomyces bailii in fruit juices using ethidium monoazide bromide and real-time PCR, International Journal of Food Microbiology, vol. 131, no. 2/3, pp.246-250, (2009).
DOI: 10.1016/j.ijfoodmicro.2009.01.031
Google Scholar
[6]
P. Trivedi, et al, Quantification of viable Candidatus Liberibacter asiaticus in hosts using quantitative PCR with the aid of ethidium monoazide (EMA), European Journal of Plant Pathology, vol. 124, no. 4, pp.553-563, (2009).
DOI: 10.1007/s10658-009-9439-x
Google Scholar
[7]
LX. Wang, A. Mustapha, EMA-Real-Time PCR as a Reliable Method for Detection of Viable Salmonella in Chicken and Eggs, Journal of Food Science, vol. 75, no. 3, pp.134-139, (2009).
DOI: 10.1111/j.1750-3841.2010.01525.x
Google Scholar
[8]
A. Abolmaaty, et al, The use of activated charcoal for the removal of PCR inhibitors from oyster samples, Journal of Microbiological Methods, vol. 68, no. 2, p.349–352, (2007).
DOI: 10.1016/j.mimet.2006.09.012
Google Scholar
[9]
K. Rudi, et al, Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples, Applied Environment Microbiology, vol. 72, no. 1, pp.1018-1024, (2005).
DOI: 10.1128/aem.71.2.1018-1024.2005
Google Scholar
[10]
I. Hein, et al, Real-time PCR for the detection of Salmonella spp. in food: An alternative approach to a conventional PCR system suggested by the FOOD-PCR project, Journal of Microbiological Methods, vol. 66, no. 3, pp.538-547, (2006).
DOI: 10.1016/j.mimet.2006.02.008
Google Scholar
[11]
P. Rossmanith, et al, Detection of Listeria monocytogenes in food using a combined enrichment/real-time PCR method targeting the prfA gene, Research in Microbiology, vol. 157, no. 8, pp.763-761, (2006).
DOI: 10.1016/j.resmic.2006.03.003
Google Scholar
[12]
M. Enosawa, et al, Use of loop-mediated isothermal amplification of the IS900 sequence for rapid detection of cultured Mycobacterium avium subsp. paratuberculosis, Journal of Clinical Microbiology, vol. 41, no. 9, pp.4359-4365, (2003).
DOI: 10.1128/jcm.41.9.4359-4365.2003
Google Scholar
[13]
A. Yano, et al, Rapid and sensitive detection of heat-labile I and heat-stable I enterotoxin genes of enterotoxigenic Escherichia coli by Loop-Mediated Isothermal Amplification, Journal of Microbiology Methods, vol. 68, no 22, pp.414-420, (2007).
DOI: 10.1016/j.mimet.2006.09.024
Google Scholar
[14]
K. Nagamine, et al, Accelerated reaction by loop-mediated isothermal amplification using loop primers, Molecular and Cellular Probes, vol. 16, no 3, pp.223-229, (2002).
DOI: 10.1006/mcpr.2002.0415
Google Scholar
[15]
S. Fukuta, et al, Detection of tomato yellow leaf curl virus by loop-mediated isothermal amplification reaction, Journal of Virological Methods, vol. 112, no 1-2, pp.35-40, (2003).
DOI: 10.1016/s0166-0934(03)00187-3
Google Scholar
[16]
I. Gunimaladevi, et al, Detection of koi herpesvirus in common carp, Cyprinus carpio L by loop-mediated isothermal amplification, Journal of Fish Disease, vol. 27, no. 10, pp.583-589, (2004).
DOI: 10.1111/j.1365-2761.2004.00578.x
Google Scholar
[17]
DG. Wang, et al, Development and Evaluation of a Loop-Mediated Isothermal Amplification (LAMP) Method for Detecting Foodborne Shigella in Raw Milk, Milk Science International, vol. 64, no. 3, pp.264-267, (2009).
Google Scholar
[18]
DG. Wang, et al, Development and Evaluation of a Loop-Mediated Isothermal Amplification (LAMP) Method for Detecting Staphylococcus aureus in Raw Milk, Milk Science International, vol. 64, no. 4, pp.349-472, (2009).
Google Scholar
[19]
HY. Yeh, et al, Evaluation of a loop-mediated isothermal amplification method for rapid detection of channel catfish Ictalurus punctatus important bacterial pathogen Edwardsiella ictaluri, Journal of Microbiology Methods, vol. 63, no 1, pp.36-44, (2005).
DOI: 10.1016/j.mimet.2005.02.015
Google Scholar
[20]
T. Itano, et al, Detection of fish nocardiosis by loop-mediated isothermal amplification, vol. 100, no 6, pp.1381-1387, (2006).
DOI: 10.1111/j.1365-2672.2006.02872.x
Google Scholar
[21]
DG. Wang, et al, Development and Evaluation of a Loop-Mediated Isothermal Amplification (LAMP) Method for Detecting Escherichia coli O157 in Raw Milk, Journal of Rapid Methods and Automation in Microbiology, vol. 17, no. 1, pp.55-66, (2009).
DOI: 10.1111/j.1745-4581.2008.00151.x
Google Scholar
[22]
P.M. Desmarchelier, A PCR specific for Escherichia coli O157 based on the rfb locus encoding O157 lipopolysaccharide, Journal of Clinical Microbiology, vol. 36, no. 6, pp.1801-1804, (2007).
DOI: 10.1128/jcm.36.6.1801-1804.1998
Google Scholar