Synthesis and Characterization of Nanometer Copper Ferrite by Auto-Combustion

Article Preview

Abstract:

A simple method for preparing nanoscale copper ferrite particles with narrow distribution and uniform size was developed by auto-combusting the precursor using copper nitrate, iron nitrate, and malic acid as raw materials. The constituents and the thermal decomposition process of the precursor were studied by Fourier transform infrared (FT-IR), thermogravimetry-differental thermal analysis (TG-DTA) and X-ray diffraction (XRD). The results showed that the carboxyl and nitrate ion take part in the reaction during the auto-combustion process. The precursor decomposed completely at about 199 °C, to yield single phase product. Transmission electron microscopy (TEM) indicated that the average size of the as-burnt sample was about 90 nm.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

3472-3476

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Kučera, V. Kolinský, S. Višňovský, D. Chvostová, N. Venkataramani, S. Prasad, et al, J. Mgne. Mgne. Mater. 316 (2007) e688-e691.

DOI: 10.1016/j.jmmm.2007.03.076

Google Scholar

[2] K. Faungnawakij, Y. Tanaka, N. Shimoda, T. Fukunaga, R. Kikuchi, K, Eguchi. Appl. Catal. B Environ. 74 (2007) 144-151.

Google Scholar

[3] G.S. Zhang, J.H. Qu, H.J. Liu, A.T. Cooper, R.C. Wu. Chemosphere, 68 (2007) 1058-1066.

Google Scholar

[4] S. Roy, J. Ghose, Mössbauer. J. Mgne. Mgne. Mater. 307 (2006) 32-37.

Google Scholar

[5] Z. P. Sun, L. Liu, D. Z. Jia, W. Y. Pan. Sensor Actuat B-Chem. 125 (2007) 144-148.

Google Scholar

[6] A. A. Farghali, M. H. Khedr, A. A. Khalek. J. Mater. Process Tech. 181 (2007) 81-87.

Google Scholar

[7] R. K. Selvan, C. O. Augustin, C. Sanjeeviraja, D. Prabhakaran. Solid State Commun. 137 (2006) 512-516.

DOI: 10.1016/j.ssc.2005.12.018

Google Scholar

[8] S. D. Sartale, C. D. Lokhande, M. Muller. Mater. Chem. Phys. 80 (2003) 120-128.

Google Scholar

[9] G. F. Goya, H. R. Rechenberg, J. Z. Jiang. J. Mgne. Mgne. Mater. 218 (2000) 221-228.

Google Scholar

[10] S. W. Tao, F. Gao, X. Q. Liu, O. T. Sørensen. Mater. Sci. Eng. B 77 (2000) 172-176.

Google Scholar

[11] J. M. Du, Z. M. Liu, W. Z. Wu, Z. H. Li, B. X. Han, Y. Huang. Mater. Res. Bull, 40 (2005) 928-935.

Google Scholar

[12] R. K. Selvan, C. O. Augustin, L. J. Berchmans, R. Saraswathi. Mater. Res. Bull, 38 (2003) 41-54.

Google Scholar

[13] D. Gingasu, I. Mindru, L. Patron, O. Carp, D. Matei, I. Balint. J. Alloy Compd, 425 (2006) 357–361.

Google Scholar

[14] D. Gingasu, I. Mindru, L. Patron, C. B. Cizmas. J. Alloy Compd, 460 (2008) 627–631.

Google Scholar

[15] O. Carp, D. Gingasu, I. Mindru, L. Patron. Thermochim. Acta, 449 (2006) 55–60.

Google Scholar

[16] Z. Yue, W. Guo, J. Zhou, L. Li. J. Magn.Magn. Mater., 270 (2004) 216–223.

Google Scholar

[17] F. Deganello, G. Marcì, G. Deganello. J. Eur. Ceram. Soc. 29 (2009) 439-450.

Google Scholar

[18] Z. X. Yue, W. Y. Guo, J. Zhou, Z. L. Gui, L. T. Li. J. Magn. Magn. Mater. 270 (2004) 216-223.

Google Scholar

[19] J. B. Wang, Q. F. Liu, D. S. Xue, F. S .Li. J. Mater. Sci. Lett. 21(13) (2002) 1059-1062.

Google Scholar

[20] J. Lian, X.Y. Zhang, H. P. Zhang, Z. H. Jiang. J. Zhang. Mater. Lett. 58 (2004) 1183-1188.

Google Scholar

[21] R. D. Purohit, B. P. Sharma. K.T. Pillai. Mater. Res. Bull, 36 (2001) 2711-2721.

Google Scholar