Preparation of a Styrenesulfonate Grafted MWCNT/Nafion® Nanocomposite Membrane for Direct Methanol Fuel Cell Applications

Article Preview

Abstract:

Styrenesulfonate grafted multi-walled carbon nanotubes (ss-MWCNTs) were prepared by a simple chemical reaction with soduim 4-styrenesulfonate to reinforce Nafion® membranes for use in direct methanol fuel cells (DMFCs). Although Nafion® membranes have excellent proton conductivity for fuel cell applications, methanol crossover through the Nafion® membrane remains a serious problem for DMFC applications. The prepared ss-MWCNTs had approximately 3.30 wt.% of sulfure and showed styrenesulfonate groups on the ss-MWCNTs. Then, the Nafion® membranes were reinforced with ss-MWCNTs to reduce methanol crossover. The styrenesulfonate groups on the ss-MWCNTs contained sulfonate end groups that enhanced miscibility of MWCNTs in the Nafion® membrance because of affinity of the same sulfonate groups in the ss-MWCNTs and the Nafion® membrane. Further, the phenyl structure of the styrenesulfonate groups on the ss-MWCNTs enhanced thermal stability at high temperature. The Nafion® membranes were reinforced with ss-MWCNTs (1 wt.%) using a solution casting with a certain amount of water and sodium 4-styrenesulfonate. Well-dispersed 1 wt.% ss-MWCNT reinforced Nafion® membranes were prepared, and the water and methanol uptake were investigated for DMFC applications. The methanol uptake value (36.84) of the 1 wt.% ss-MWCNT reinforced Nafion® membranes was reduced compared to that of the cast Nafion® membrane (38.85).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

3685-3690

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.C.H. Steele and A. Heinzel, Nature 414 (2001) 345-352.

Google Scholar

[2] N.A. Hampson, and M.J. Wilars, J. Power Sources 4 (1979) 191.

Google Scholar

[3] D.H. Jung, S.Y. Cho, D.H. Peck, D.R. Shin, and J.S. Kim, J. Power Sources 118(2003) 205.

Google Scholar

[4] J.M. Thomassin, J. Kollar, G. Caldarella, A. Germain, R. Jerome, and C. Detrembleur, J. Membrane Science 303 (2007) 252.

Google Scholar

[5] J. Chen, M. Asano, T. Yamaki, and M. Yoshida, J. Power Sources 158 (2006) 69.

Google Scholar

[6] T.A. Sherazi, S. Ahmad, M.A. Kashmiri, D.S. Kim, and M.D. Guiver, J. Membrane Science 333 (2009) 59.

Google Scholar

[7] J.-M. Thomassin, J. Kollar, G. Caldarella, A. Germain, R. J´erˆomea, C. Detrembleur, J. Membrane Science 303 (2007) 252.

Google Scholar

[8] M. Rikukawa, K. Sanui, Prog. Polym. Sci. 25 (2000) 1463.

Google Scholar

[9] P.L. Antonucci, A.S. Arico, P. Creti, E. Ramunni, and V. Antonucci, Solid State Ionics 125 (1999) 431.

Google Scholar

[10] C. Yang, S. Srinivasan, A.S. Arico, P. Creti, and V. Baglio, Electrochem. Solid-State Lett. 4 (2001) A31.

Google Scholar

[11] R.F. Silva, S. Passerini, and A. Pozio, Electrochim. Acta 50 (2005) 2639.

Google Scholar

[12] Z.-G. Shao, P. Joghee, and I-M. Hsing, J. Membrane Science 229 (2004) 43.

Google Scholar

[13] G. Alberti, M. Casciola, D. Capitani, A. Donnadio, R. Narducci, M. Pica, and M. Sganappa, Electrochimica Acta 52 (2007) 8125.

DOI: 10.1016/j.electacta.2007.07.019

Google Scholar

[14] W. Xu, T. Lu, C. Liu, and W. Xing, Electrochim. Acta 50 (2005) 3280.

Google Scholar

[15] Y.H. Kim, H.K. Lee, Y. Park, A.I. Gopalan, K.-P. Lee, and S.-J. Choi, J. Nanoelectron. Optoelectron. 5 (2010) 208-211.

Google Scholar

[16] I.D. Rosca, F. Watari, M. Uo, T. Akasaka, Carbon 43 (2005) 3124-3131.

DOI: 10.1016/j.carbon.2005.06.019

Google Scholar

[17] C.Y. Du, T.S. Zhao, Z.X. Liang, J. Power Sources 176 (2008) 9-15.

Google Scholar