Effects of Hot-Forging Process on Combination of Strength and Toughness in Ultra High-Strength TRIP-Aided Martensitic Steels

Article Preview

Abstract:

Recently developed ultra high-strength low alloy transformation-induced plasticity (TRIP)-aided steel with martensitic lath structure matrix or "TRIP-aided Martensitic steel; TM steel" possesses a high impact toughness. In this study, to apply the TM steel to some hot-forging parts, the effects of hot-forging on microstructure, retained austenite characteristics, tensile properties and toughness in the TM steels with chemical composition of 0.3-0.4%C, 1.5%Si, 1.5%Mn, 0.002%B, 0.02Ti, 0.05Nb (mass%) were investigated. The hot forging brought on an excellent combinations of tensile strength of 1500-2000 MPa or 0.2% offset proof stress of 1200-1560 MPa and Charpy impact absorbed value of 35-80 J/cm2 when partitioned at 250-350°C after quenching in oil. The combinations exceeded so much those of the conventional quench and tempering structural steels. From examinations of microstructure and retained austenite characteristics, it was found that the excellent combinations are mainly caused by (i) refined and uniform martensitic lath structure matrix with a small amount of carbide, (ii) increasing narrow martensite with high dislocation density and (iii) the increased stability of retained austenite, resulting from the FQP process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

696-701

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. F. Zackay, E. R. Parker, D. Fahr and R. Bush: Trans. Amer. Soc. Met., Vol. 60 (1967), p.252.

Google Scholar

[2] K. Sugimoto, J. Sakaguchi, T. Iida and T. Kashima: ISIJ Int., Vol. 40 (2000), p.920.

Google Scholar

[3] K. Sugimoto, S. Hashimoto and S. Ikeda: Int. Conf. on Advanced High Strength Sheet Steels for Automotive Applications Proc., AIST, Warrendale, PA, (2004), p.63.

Google Scholar

[4] T. Hojo, K. Sugimoto, Y. Mukai and S. Ikeda: ISIJ Int., Vol. 48 (2008), p.824.

Google Scholar

[5] K. Sugimoto, M. Kobayashi, K. Inoue and Y. Masuda: Tetsu-to-Hagane, Vol. 85 (1999), p.856.

Google Scholar

[6] S. Song, K. Sugimoto, M. Kobayashi, H. Matsubara and T. Kashima: Tetsu-to-Hagane, Vol. 86 (2000), p.563.

Google Scholar

[7] J. Kobayashi and K. Sugimoto: unpublised data.

Google Scholar

[8] H. Maruyama: J. Jpn. Soc. Heat Treat., Vol. 17 (1977), p.198.

Google Scholar

[9] D. J. Dyson and B. Holmes: J. Iron Steel Inst., Vol. 208 (1970), p.469.

Google Scholar

[10] J. H. Wu, P. J. Wray, C. I. Garcia, M. J. Hua and A. J. DeArdo: ISIJ Int., Vol. 45 (2005), p.254.

Google Scholar

[11] K. Sugimoto, S. Sato and G. Arai: Mat. Sci. Forum, Vol. 638-642 (2010), p.3074.

Google Scholar

[12] K. Sugimoto, J. Kobayashi and G. Arai, Steel Res. Int., Vol. 81 (2010), p.254.

Google Scholar

[13] K. Sugimoto, M. Kobayashi and S. Hashimoto: Metall. Trans. A, Vol. 23A (1992), p.3085.

Google Scholar