Electrical Characteristics and Microstructures of Dy-Doped Bi4Ti3O12 Ceramics

Article Preview

Abstract:

The electrical properties of Dy-bismuth titanate (Bi4-xDyxTi3O12) prepared by a conventional ceramic technique have been investigated. At applied d.c. field below 200V/mm, the current-voltage curve of Dy-doped sample exhibits a simple ohmic behavior. The impedance spectrum of Dy-doped sample indicates that consist of semiconducting grain and moderately insulating grain boundary regions. XRD, SEM and EPMA analyses reveal crystalline phase characterized by a Bi-layered perovskite structure of Bi4Ti3O12 and the distribution of every element is uniform. Dy-doped sample exhibit randomly oriented and plate-like morphology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

322-325

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Tarui, T. Hirai, K. Teramoto, et al.: Appl. Sur. Sci. Vol. 113-114 (1997), p.656.

Google Scholar

[2] Y. Xu: Ferroelectric Materials and Their Applications( North-Holland, New York, 1991).

Google Scholar

[3] S.E. Cummins, L.E. Cross: J. Appl. Phys. Vol. 39 (1968), p.2268.

Google Scholar

[4] Y. Shimakawa, Y. Kubo, Y. Tauchi, et al.: Appl. Phys. Lett. Vol. 79 (2001), p.2791.

Google Scholar

[5] Y. In-Sook, M. Miyayama: Mater. Res. Bull. Vol. 32 (1997), p.1349.

Google Scholar

[6] C.J. Kim, S.G. Hong: Thin Solid Films Vol. 365 (2000), p.58.

Google Scholar

[7] X.S. Wang, J.W. Zhai, L.Y. Zhang, et al.: Infrared Phys. Tech. Vol. 40 (1999), p.55.

Google Scholar

[8] C. Voisard, D. Damjanovic, N. Setter: J. Eur. Ceramic Soc. Vol. 19(1999), p.1251.

Google Scholar

[9] B. H. Park, B. S. Kang, S. D. Bu, et al.: Nature, Vol. 401(1999), p.682.

Google Scholar

[10] D. Wu, A.D. Li, H.Q. Lin, et al.: J. Appl. Phys. Vol. 88 (2000), p.5941.

Google Scholar

[11] R. Bling, B. ŽEKŠ: Soft Modes in Ferroelectrics and Antiferroelectrics ( Science Press, Peking, 1981), p.288.

Google Scholar

[12] J. K. Lee, C. H. Kim, H. S. Suh, et al.: Appl. Phys. Lett. Vol. 80(2002), p.3593.

Google Scholar

[13] G. Dearnaley, D.V. Morgan, A.M. Stoneham: J. Non-Cry. Solid. Vol. 4 (1970), p.593.

Google Scholar

[14] M. Watanabe, T. Suemasu, S. Muratake: Appl. Phys. Lett. Vol. 62(1993), p.300.

Google Scholar

[15] V. Erokhin, S. Carrara, H. Amenitch, et al.: Nanotechnology Vol. 9 (1998), p.158.

Google Scholar

[16] H. Fritzsche, J. Tauc: Amorphous and Liquid Semiconductors ( Plenum press, London and New York, 1974), p.313.

Google Scholar

[17] C. Moure, J.F. Fernandez, M. Villegas, et al.: J. Eur. Ceram. Soc. Vol. 19(1999), p.131.

Google Scholar

[18] S. Gravano, R.D. Gould: Int. J. Electronics Vol. 73 (1992), p.315.

Google Scholar

[19] S. Gravano, R.D. Gould, Int. J. Electronics Vol. 73 (1992), p.837.

Google Scholar

[20] M. Alexe, J.F. Scott, C. Curran, et al.: Appl. Phys. Lett. Vol. 73(1998), p.1592.

Google Scholar