[1]
T. Huajin, L. Weng, Z.Y. Dong, and R. Yan , Adaptive and Learning Control for SI Engine Model With Uncertainties, IEEE/ASME Transactions on Mechatronics, vol. 14, no. 1, pp.93-104, Feb. (2009).
DOI: 10.1109/tmech.2008.2004806
Google Scholar
[2]
L. Derong, H. Javaherian, O. Kovalenko, and T. Huang, Adaptive Critic Learning Techniques for Engine Torque and Air-Fuel Ratio Control, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 38, no. 4, pp.988-993, Aug. (2008).
DOI: 10.1109/tsmcb.2008.922019
Google Scholar
[3]
D. Rupp and L. Guzzella, Iterative Tuning of Internal Model Controllers With Application to Air/Fuel Ratio Control, IEEE Transactions on Control Systems Technology, vol. 18, no. 1, pp.177-184, Jan. (2010).
DOI: 10.1109/tcst.2008.2010458
Google Scholar
[4]
N. Cavina, E. Corti, and D. Moro, Closed-loop individual cylinder air-fuel ratio control via UEGO signal spectral analysis, Control Engineering Practic, vol. 18, no. 11, pp.1295-1306, Nov. (2010).
DOI: 10.1016/j.conengprac.2009.12.002
Google Scholar
[5]
K. R. Muske, J. C. P. Jones, and E. M. Franceschi., Adaptive Analytical Model-Based Control for SI Engine Air-Fuel Ratio, IEEE Transactions on Control Systems Technology , vol. 16, no. 4, pp.763-768, July (2008).
DOI: 10.1109/tcst.2007.912243
Google Scholar
[6]
D. Rupp and L. Guzzella, Adaptive internal model control with application to fueling control, Control Engineering Practice, vol. 18, no. 8, pp.873-881, Aug. (2010).
DOI: 10.1016/j.conengprac.2010.03.011
Google Scholar
[7]
C. Manzie, M. Palaniswami, and H. Watson, Gaussian networks for fuel injection control, In Proceedings of the Institution of Mechanical Engineers, Part D, Journal of Automobile Engineering, vol. 215, no. 10, p.1053–1068, (2001).
DOI: 10.1243/0954407011528617
Google Scholar
[8]
C. Manzie, M. Palaniswami, D. Ralph, H. Watson, and X. Yi, Model predictive control of a fuel injection system with a radial basis function network observer, J. Dyn. Syst. Meas. Control Trans. ASME, vol. 124, no. 4, p.648–658, Dec. (2002).
DOI: 10.1115/1.1515328
Google Scholar
[9]
S. W. Wang, and D. L. Yu, Adaptive RBF network for parameter estimation and stable air-fuel ratio control, Neural Networks, vol. 21, no. 1, no. 1, pp.102-112, Jan. (2008).
DOI: 10.1016/j.neunet.2007.10.006
Google Scholar
[10]
J. S. Souder and J. K. Hedrick, Adaptive sliding mode control of air–fuel ratio in internal combustion engines, International Journal of Robust and Nonlinear Control, vol. 14, no. 6, p.525–541, April (2004).
DOI: 10.1002/rnc.901
Google Scholar
[11]
T. Huajin, L. Weng, D. Zhao Yang, and Y. Rui, Engine control design using globally linearizing control and sliding mode, Transactions of the institute of Measurement and Control, vol. 32, no. 2. pp.225-247, April 1, (2010).
DOI: 10.1177/0142331209339870
Google Scholar
[12]
A. Chevailer, C. W. Vigild, and E. Hendricks, Predicting the Port Air Mass Flow of SI Engines in Air/Fuel Ratio Control Applications, SAE Technical Paper, no. 2000-01-0260, (2000).
DOI: 10.4271/2000-01-0260
Google Scholar
[13]
A. Dutka, H. Javaherian, M. J. Grimble, State-Dependent Kalman Filters for Robust Engine Control, in Proc. of the 2006 American Control Conference, Minneapolis, Minnesota, USA, June 14-16 (2006).
DOI: 10.1109/acc.2006.1656378
Google Scholar
[14]
P. Anderson, Air charge estimation in turbocharged spark ignition engines, Ph.D. dissertation, Dept. Elect. Eng., Linköping Univ., Linköping, Sweden, (2005).
Google Scholar
[15]
E. Hendricks, A generic mean value engine model for spark ignition engines, in Proc. 41st SIMS Simul. Conference: SIMS 2000, Lyngby, Denmark, Sep. 18-19 (2000).
Google Scholar
[16]
D. Simon, Optimal State Estimation: Kalman, H infinity, and Nonlinear Approaches, 1st ed. Wiley & Sons, Aug. 2006. Fig. 1 Throttle angle variations.
Google Scholar