[1]
Korhonen, P., Moskowitz, H., and Wallenius, J. (1992). "Multiple Criteria Decision Support - A Review". European Journal of Operational Research, 63, 361-375.
DOI: 10.1016/0377-2217(92)90155-3
Google Scholar
[2]
Hwang, C.L., Masud, A.S.M., Paidy, S.R., and Yoon, K. (1979). "Multiple Objective Decision Making – Methods and Application"s". Springer Verlag, Berlin, Germany.
Google Scholar
[3]
Harrington, E., Jr. (1965). "The Desirability Function". Industrial Quality Control, 21, 494-498.
Google Scholar
[4]
Derringer, G. (1994). "A Balancing Act: Optimizing a Product's Properties". Quality Progress, 27, 51-57.
Google Scholar
[5]
Derringer, G. and Suich, R. (1980). "Simultaneous Optimization of Several Response Variables". Journal of Quality Technology, 12, 214-219.
DOI: 10.1080/00224065.1980.11980968
Google Scholar
[6]
Kim, K. and Lin, D. (2006). "Optimization of Multiple Responses Considering Both Location and Dispersion Effects". European Journal of Operational Research, 169, 133-145.
DOI: 10.1016/j.ejor.2004.06.020
Google Scholar
[7]
Pignatiello, J. (1993). "Strategies for Robust Multiresponse Quality Engineering". IIETransactions, 25, 5-15.
Google Scholar
[8]
Vining, G. (1998). "A Compromise Approach to Multiresponse Optimization". Journal of Quality Technology, 30, 309-313.
DOI: 10.1080/00224065.1998.11979867
Google Scholar
[9]
Ko, Y., Kim, K., and Jun, C. (2005). "A New Loss Function- Based Method for Multiresponse Optimization". Journal of Quality Technology, 37, 50-59.
DOI: 10.1080/00224065.2005.11980300
Google Scholar
[10]
Khuri, A.I., Conlon, M. (1981). " Simultaneous optimization of multiple response represented by polynomial regression functions". Technometrics 23, 363-375.
DOI: 10.1080/00401706.1981.10487681
Google Scholar
[11]
Chiao, C., Hamada, M. (2001). "Analyzing experiments with correlated multiple responses". Journal of Quality Technology 33, 451–465.
DOI: 10.1080/00224065.2001.11980104
Google Scholar
[12]
Amiri, M., Karimi, N., Jamshidi, S.F. (2008). "A methodology for optimizing statistical multi-response problems using genetic local search algorithm through fuzzy goal programming". Journal of Applied Sciences, 8, 3199-3206.
DOI: 10.3923/jas.2008.3199.3206
Google Scholar
[13]
Kazemzadeh, R.B., Bashiri.M, Atkinson, A.C., Noorosana, R. (2008). "A general frame work for multi response optimization problems based on goal programming", European Journal of Operational Research 189, 421-429.
DOI: 10.1016/j.ejor.2007.05.030
Google Scholar
[14]
Xu, K., Lin, D.K.J., Tang, L.C., Xie, M. (2004). "Multi-response system optimization using a goal attainment approach". IIE Transactions, 36, 433-445.
DOI: 10.1080/07408170490426143
Google Scholar
[15]
Tong, L.I., Wang, C.H., Chen, H.C. (2005). " Optimization of multiple responses using principal component analysis and technique for order preference by similarity to ideal solution". Int J Adv Manuf Technol 27, 407-414.
DOI: 10.1007/s00170-004-2157-9
Google Scholar
[16]
Jeong, I., Kim, K. (2003). "Interactive Desirability Function Approach to Multiresponse Surface Optimization". International Journal of Reliability, Quality And Safety Engineering 10, 205-217.
DOI: 10.1142/s0218539303001093
Google Scholar
[17]
Jeong, I., Kim, K. (2005). " D-STEM: A Modified Step Method with Desirability Function Concept". Computers and Operations Research 32, 3175-3190.
DOI: 10.1016/j.cor.2004.05.006
Google Scholar
[18]
Jeong, I., Kim, K. (2009). " An Interactive Desirability Function Method to Multiresponse Optimization", European Journal of Operational Research 195: 412–426.
DOI: 10.1016/j.ejor.2008.02.018
Google Scholar
[19]
Hertz, A., Jaumard, B., Ibeiro, C.C., Formosinho Filho, W.P. (1994). "A multi-criteria tabu search approach to cell formation problems in group technology with multiple objectives". Rech. Oper./Oper. Res. 28(3), 303–328.
DOI: 10.1051/ro/1994280303031
Google Scholar
[20]
Schaffer, J. D. (1985). "Multiple objective optimization with vector evaluated genetic algorithms. In genetic algorithms and their applications", Proceedings of the First. International Conference on Genetic Algorithms, 93-100. Hillsdale, New Jersey.
Google Scholar
[21]
Fonseca, C. M. and Fleming, P. J., (1993). "Genetic algorithms for multiobjective optimization: formulation, discussion and generalization". Proceedings of the Fifth .International Conference on Genetic Algorithms, 416-423. San Mateo, California
Google Scholar
[22]
Erickson, M., Mayer, A. and Horn, J. (2001). "The niched Pareto genetic algorithm 2 applied to the design of groundwater remediation system"s. First International Conference on Evolutionary Multi-Criterion Optimization, 681-695.
DOI: 10.1007/3-540-44719-9_48
Google Scholar
[23]
Deb, K., Agarwal, S., Pratap, A. and Meyarivan, T. (2000). "A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II". Proceedings of the Parallel Problem Solving from Nature VI Conference, 849-858. Paris, France.
DOI: 10.1007/3-540-45356-3_83
Google Scholar
[24]
Tong LI, Chen CC, Wang CH., (2007). "Optimization of Multi-Response Processes Using the VIKOR Method". International Journal of Advanced Manufacturing Technology, 31, 1049–1057.
DOI: 10.1007/s00170-005-0284-6
Google Scholar
[25]
Jauregi, P., Gilmour, S., Varley, J., (1997). "Characterisation of colloidal gas aphrons for subsequent use for protein recovery". Chemical Engineering Journal 65, 1-11.
DOI: 10.1016/s1385-8947(96)03154-3
Google Scholar