Improved Resistivity of GaN with Partially Mg-Doped Grown on Si(111) Substrates by MOCVD

Article Preview

Abstract:

The continuous 1.0 µm GaN epilayers with and without partially Mg-doped were grown on Si (111) substrates by metal organic chemical vapor deposition (MOCVD). The DC current-voltage (I-V), time-of-flying secondary ion mass spectrometer (ToF-SIMS) and atomic force microscope (AFM) measurements were employed for comparison to characterize surface morphology and resistivity of GaN buffer layer with and without partially Mg-doped. The sample of 1.0 µm GaN epilayer with partially Mg-doped shows much higher resistivity than sample without Mg-doped, which indicates the partially Mg doping in 1.0 µm GaN epilayer can effectively increase the resistivity of GaN grown on Si (111) substrates. As a result, the high resistivity GaN buffer layer with good surface morphology is achieved in the partially Mg-doped GaN buffer layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

16-20

Citation:

Online since:

January 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Heikman S., Keller S., Mates T., DenBaars S.P., and Mishra U.K.: Growth and characteristics of Fe-doped GaN. J. Crystal Growth, Vol. 248, (2003) 513-517.

DOI: 10.1016/s0022-0248(02)01926-7

Google Scholar

[2] Kuznetsov N. I., Nikolaev A. E., Zubrilov A. S., Melnik Yu. V., and Dmitriev V. A.: Insulating GaN: Zn layers grown by hydride vapor phase epitaxy on SiC substrates. Appl. Phys. Lett., Vol. 75, No. 20, (1999) 3138.

DOI: 10.1063/1.125256

Google Scholar

[3] Heikman S., Keller S., DenBaars S. P., and Mishra U. K.: Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition. Appl. Phys. Lett., Vol. 81, No. 3, (2002) 439.

DOI: 10.1063/1.1490396

Google Scholar

[4] Polyakov A.Y., Smirnov N.B., Govorkov A.V., and Pearton S.J.: Properties of Fe-doped semi-insulating GaN structures: J. Vac. Sci. Technol. B22 (2004) 120.

DOI: 10.1116/1.1633776

Google Scholar

[5] Bougrioua Z., Moerman I., L. Nistor C., Monroy E., Plalacios T., Calle F., and Lerorx M.: Engineering of an insulating buffer and use of AlN interlayers: two optimisations for AlGaN-GaN HEMT-like structures. Phys. Stat. Sol. (a) 195, No. 1, (2003).

DOI: 10.1002/pssa.200306305

Google Scholar

[6] Bougrioua Z., Moerman I., Sharma N., Wallis R.H., Cheyns J., Jacobs K., Thrush E.J., Considine L., Beanland R., Farvacque J. -L., and Humphreys C.: Material optimisation for AlGaN/GaN HFET applications. Journal of Crystal Growth, Vol. 230, (2001).

DOI: 10.1016/s0022-0248(01)01303-3

Google Scholar

[7] Chen J., Zhang S.M., Zhang B.S., Zhu J.J., Feng G., Shen X.M., Wang Y.T., Yang H., and Zheng W.C.: Effects of reactor pressure on GaN nucleation layers and subsequent GaN epilayers grown on sapphire substrate. Journal of Crystal Growth, Vol. 254, (2003).

DOI: 10.1016/s0022-0248(03)01235-1

Google Scholar

[8] Wu K T, Chang P H, Lien S T and Chen N C.: Physica E: Low-dimensional Systems and Nanostructures 32 (2006) 566.

Google Scholar