Structure of Antheraea pernyi/Bombyx mori Silk Fibroin Scaffolds

Article Preview

Abstract:

As the tissue engineering scaffolds, the pore structure and condensed structure of silk fibroin scaffolds should be adjusted and controlled. In this study, Antheraea pernyi/Bombyx mori (A. p/B. m) silk fibroin blend scaffolds were prepared by freeze-drying. The influence of blend ratios on the pore structure and condensed structure of the scaffolds was investigated. The results showed that the average pore diameter of the blend scaffolds changed from 56 to 326 μm. Due to the difference of properties and the macromolecules aggregation status of two silk fibroin solutions, the pore diameter, content of α-helix and crystallinity of the scaffolds decreased with the increasing of the proportion of B. m silk fibroin. By adjusting the blend ratios, the pore structure and condensed structure of A. p/B. m silk fibroin blend scaffolds could be controlled.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

2321-2325

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. E. Unger, M. Wolf, K. Peters and C. J. Kirkpatrick: Biomaterials Vol. 25(2004), p.1069

Google Scholar

[2] H. J. Kim, U-J. Kim, V-N. Gordana and D. L. Kaplan: Biomaterials Vol. 26(2005), p.4442

Google Scholar

[3] Y. Z. Wang, H-J Kim and D. L. Kaplan: Biomaterials Vol. 27(2006), p.6064

Google Scholar

[4] L. Meinel, S. Hofmann, O. Betz, R. Fajardo and D. L. Kaplan: Biomaterials Vol. 27(2006), p.4993

Google Scholar

[5] C. Veparia and D. L. Kaplan: Prog Polym Sci Vol. 32(2007), p.991

Google Scholar

[6] R. Langer and J. P. Vacani: Science Vol. 260(1993), p.920

Google Scholar

[7] D. A. Cieslinski and H. D. Humes: Biotech Bioeng Vol. 43(1994), p.678

Google Scholar

[8] B. A. Coonts, S. L. Whitman and R. L. Dunn: Biomed Mater Res Vol. 42(1998), p.303

Google Scholar

[9] M. Z. Li, S. Z. Lu and L. H. Wang: Journal of Applied Polymer Science Vol. 79(2002), p.2185

Google Scholar

[10] M. Z. Li, S. Z. Lu and L. H. Wang: Jounral of Applied Polymer Science Vol. 79(2002), p.2192

Google Scholar

[11] P. Taddei, T. Arai and A. Bosch: Biomacromolecules Vol. 7(2006), p.259

Google Scholar

[12] Y. Z. Wang, D. D. Rudym and D. L. Kaplan: Biomaterials Vol. 29(2008), p.3415

Google Scholar

[13] W. Tao: International Journal of Biologucal Macromolecules Vol. 40(2007), p.472

Google Scholar

[14] N. Minoura: Biochemical and Biophysical Research Communications Vol. 208(1995), p.511

Google Scholar

[15] S. Q. Yan, C. X. Zhao and M. Z. Li: Science China Chemistry Vol. 53(2010), p.535

Google Scholar

[16] M. Z. Li, Z. Y Wu and S. Z. Lu: Journal of Dong Hua University Vol. 2(2001), p.12

Google Scholar

[17] P. Taddeia, P. Monti and M. Tsukada: Journal of Molecular Structure Vol. 651(2003), p.433

Google Scholar

[18] M. Tsukada : Journal of Polymer Science: Part B: Polymer. Physics Vol. 25(1987), p.1325

Google Scholar