Study on the Bio-Composite from Sisal Fiber Reinforced Cellulose Acetate

Article Preview

Abstract:

In this paper, sisal fibers (SF) reinforced cellulose acetate composites were prepared using twin-screw extrusion followed by hot-press moulding technology. Both the mechanical properties and the biodegradable rate of the composite were investigated in terms of effect of initial length and mass content percentage of sisal fiber on. The results showed that the fibers tended to be shorter and thinner during the processing of twin-screw blending and the tensile and flexure strength of composites were enhanced, with the content or initial length of sisal fibers increasing. Furthermore, the biodegradation rate of the composite was forward at first, and gradually became slow in later period and then leveled off finally. In addition, Micro-morphologies of the fracture surface of the composite were visualized by scanning electron microscopy (SEM) to analyze the effect of initial length and content of sisal fibers on interfacial adhesion and the distribution of sisal fibers in the composites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

2301-2306

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Averous, N. Boquillon: Carbohydr. Polym., Vol. 56 (2004), p.111

Google Scholar

[2] S.H. Lee, S.Q. Wang: Composites Part A, Vol. 37 (2006), p.80

Google Scholar

[3] S. Alix, S. Marais and C. Morvan: Composites Part A, Vol. 39 (2008), p.1793

Google Scholar

[4] N. Graupner, A. S. Herrmann and J. Müssig: Composites Part A, Vol. 40 (2009), p.810

Google Scholar

[5] A.K. Mohanty, A. Wibowo and M. Misra: Composites Part A, Vol. 35 (2004), p.363

Google Scholar

[6] K. Oksman: J. Reinf. Plast. Compos., Vol. 20 (2001), p.621

Google Scholar

[7] K. Oksman: Appl. Compos. Mater., Vol. 7 (2000), p.403

Google Scholar

[8] A.R. Sanadi, D.F. Cauldfield and R.M. Rowell: Plast. Eng., Vol. 50 (1994), p.27

Google Scholar

[9] A.K. Bledzki, S. Reihmane and J. Gassan: J. Appl. Polym. Sci., Vol. 59 (1996), p.1329

Google Scholar

[10] A.K. Mohanty, M. Misra and L.T. Drzal: Compos. Interfaces, Vol. 8 (2001), p.313

Google Scholar

[11] Y.R. Lin, G. Ehlert and A. Henry: Adv. Funct. Mater., Vol. 19 (2009), p.2654

Google Scholar

[12] P.V. Joseph, S. Marcelo and L.H. Rabello: Compos. Sci. Technol., Vol. 62 (2002), p.1357

Google Scholar

[13] M.S. Huda, L.T. Drzal and A. K. Mohanty: Compos. Sci. Technol., Vol. 68 (2008), p.424

Google Scholar

[14] A.N. Towo, M.P. Ansell: Compos. Sci. Technol., Vol. 68 (2008), p.925

Google Scholar

[15] A. Paul, K. Joseph and S. Thornas: Compos. Sci. Technol., Vol. 51 (1997), p.67

Google Scholar

[16] S. Mishra, A.K. Mohanty and L.T. Drzal: Compos. Sci. Technol., Vol. 63 (2003), p.1377

Google Scholar

[17] M.Z. Rong, M.Q. Zhang and Y. Liu: Sci. Technol., Vol. 61 (2001), p.1437

Google Scholar

[18] C. A.S. Hill, H.P.S. Abdul Khalil, M.D. Hale: Ind. Crop. Prod., Vol. 8 (1998), p.53

Google Scholar

[19] M. S. Sreekala, S. Thomas: Compos. Sci. Technol., Vol. 63 (2003), p.861

Google Scholar

[20] K. C. Manikandan Nair, S. Thomas and G. Groeninckx: Compos. Sci. Technol., Vol. 61 (2001), p.2519

Google Scholar

[21] A.C. Wibowo, A.K. Mohanty and M. Misra: Ind. Eng. Chem. Res., Vol. 43 (2004), p.4883

Google Scholar

[22] M. Avella, E. Martuscelli and B. Pascucci: J. Appl. Polym. Sci., Vol. 49 (1993), p. (2091)

Google Scholar

[23] P. V. Joseph, K. Joseph and S. Thomas: Compos. Sci. Technol., Vol. 59 (1999), p.1625

Google Scholar

[24] P.G. vatsal, V. Dave: Pure. Appl. Chem., Vol. A33 (1996), p.627

Google Scholar