The Influence of Thermal Treatment Temperature on the Structure and Performance of Monocarboxyphenyl Cobalt Porphyrin Loaded on Carbon Carrier as an Electrocatalyst for Oxygen Reduction

Article Preview

Abstract:

The monocarboxyphenyl cobalt porphyrin (CoMCPP) was synthesized and incorporated into carbon carrier acetylene black (ACET) for proton exchange membrane fuel cell cathode oxygen reduction. The influence of different thermal treatment temperature on the catalytic performance of the composite catalysts was discussed. The synthetic compound catalyst was analyzed by XRD、IR. The electrochemical catalytic performance of catalyst, which was heat-treated under different temperature, for oxygen reduction was tested by linear sweep voltammetry (LSV). The result shows that the best thermal treatment temperature is 6000C, and its catalytic activity also shows the best, the catalytic activity site changes from CoN4 to C-N-Co.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 573-574)

Pages:

27-30

Citation:

Online since:

October 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.R. Ralph: Platinum Metals Rev, Vol. 43 (1997) No. 3, p.102.

Google Scholar

[2] W. Chen, J. Akhigbe, C. Bruckner, C.M. Li and Y. Lei: J Phys Chem C, Vol. 114 (2010) No. 18, p.8633.

Google Scholar

[3] J. Zhang, K. SasaKi, E. Sutter and R.R. Adzic: Science, Vol. 315 (2007) No. 5809, p.220.

Google Scholar

[4] X.Y. Xie, Z.F. Ma, X.X. Ma, Q.Z. Ren and V.M. Schmidt: Journal of Inorganic Chemistry, Vol. 23 (2007) No. 1, p.34.

Google Scholar

[5] A.A. Serov, M. Min, G. Chai, S. Han, S.J. Seo, Y. Park, H. Kim and C. Kwak: J Appl Electrochem, Vol. 39 (2009) No. 9, p.1509.

Google Scholar

[6] Q.H. Huang, Z.Y. Li and W. Wang: Power Technology, Vol. 27 (2003) No. S1, p.241.

Google Scholar

[7] T.S. Shi, W. Liu, G.F. Liu, X.Q. Wang and S.Y. Wang: Applied chemistry, Vol. 15 (1998) No. 3, p.73.

Google Scholar

[8] X.X. Ma, Q.Z. Ren and Z.F. Ma: Chemical World, Vol. 4 (2005), p.243.

Google Scholar

[9] S.B. Hendrik, S. Svetoslav, S.M. Volker, J.R. Radnik, D. Irist, F. Sebastian, P. Bogdanoff and H. Tributsch: J Phys Chem B, Vol. 107 (2003) No. 34, p.9034. 9034-9041.

Google Scholar

[10] S. Koh, M.F. Toney and P. Strasser: Electrochimica Acta, Vol. 52 (2007) No. 8, p.2765.

Google Scholar

[11] W.B.B. Cicero, L. Zhang, H.S. Liu, K.C. Lee, L.B.M. Aldaléa, P.M. Edmar, H.J. Wang and J. J: Journal of Power Sources, Vol. 173 (2007) No. 2, p.891.

Google Scholar

[12] G. Faubert, G. Lalande, R. Cote, D. Guay, J.P. Dodelet, L.T. Weng, P. Bertrand and G. Denes: Electrochimica Acta, Vol. 41 (1996) No. 10, p.1689.

DOI: 10.1016/0013-4686(95)00423-8

Google Scholar

[13] H.B. Fa, W. Yin, C.J. Hou, W.Q. Zheng, D.J. Wang and X.Q. Wang: Journal of Coordination Chemistry, Vol. 62 (2009) No. 7, p.1151.

Google Scholar

[14] Y. Umasankar, J.W. Shi, and S.M. Chen: Journal of the Electrochemical Society, Vol. 156 (2009) No. 12, p. K238.

Google Scholar

[15] Y.F. Ji, Z.F. Li, S.W. Wang, G.F. Xu and X.Y. Yu: International Journal of Hydrogen Energy, (2010) No. 35, p.8117.

Google Scholar

[16] Q.Z. Ren, X.X. Ma, X.Y. Xie and T. Yan: Journal of Chemical Industry and Engineering, Vol. 57 (2006) No. 11, p.2597.

Google Scholar

[17] H. Wang, R. Cote and G. Faubert: J Phys Chem B, Vol. 103 (1999), p. (2042).

Google Scholar

[18] G.X. Wang, G.Q. Sun. Q. Wang, S.L. Wang, J.S. Guo, Y. Gao, Q: Journal of Power Sources, Vol. 180 (2008) No. 1, p.176.

Google Scholar