Resveratrol Inhibition Osteoclastogenesis Induced by RANKL through Decrease Preosteoclast Formation

Article Preview

Abstract:

It has been demonstrated that resveratrol can inhibit osteoclastogenesis induced by receptor activator of nuclear factor kappaB ligand (RANKL) in several cell models. However, the mechanism has not yet been completely clarified. In this study, we investigated the effects of resveratrol on osteoclasts differentiation induced by RANKL. Preosteoclast or osteoclast derived from the murine monocytic cell line RAW264.7 treated with RANKL. In RAW264.7 cells culture, data indicated that resveratrol at non-toxic concentrations dose-dependently inhibited the formation of osteoclasts and the activation of tartrate-resistant acid phosphatase (TRAP). Using flow cytometry assay, the results indicated that the percentage of preosteoclast differentiation was decreased by resveratrol, whereas the apoptosis rate of preosteoclasts was not changed. Our results suggest that resveratrol might inhibit the differentiation of RAW264.7 cells into osteoclasts and decrease osteoclast activation possibly via suppressing monocytes to differentiate preosteoclasts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-128

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Habermann, C. Eberhardt, M. Feld, L. Zichner, A.A. Kurth: Acta Orthop Vol 78 (2007), p.221.

Google Scholar

[2] N. Udagawa, N. Takahashi, E. Jimi, K. Matsuzaki, T. Tsurukai, K. Itoh, N. Nakagawa, H. Yasuda, M. Goto, E. Tsuda, K. Higashio, M.T. Gillespie, T.J. Martin, T. Suda: Bone Vol 25 (1999), p.517.

DOI: 10.1016/s8756-3282(99)00210-0

Google Scholar

[3] J.R. Canon, M. Roudier, R. Bryant, S. Morony, M. Stolina, P.J. Kostenuik, W.C. Dougall: Clin Exp Metastasis Vol 25 (2008), p.119.

DOI: 10.1007/s10585-007-9127-1

Google Scholar

[4] X. He, G. Andersson, U. Lindgren, Y. Li: Biochem Biophys Res Commun Vol 401 (2010), p.356.

Google Scholar

[5] D.H. Jones, T. Nakashima, O.H. Sanchez, I. Kozieradzki, S.V. Komarova, I. Sarosi, S. Morony, E. Rubin, R. Sarao, C.V. Hojilla, V. Komnenovic, Y.Y. Kong, M. Schreiber, S.J. Dixon, S.M. Sims, R. Khokha, T. Wada, J.M. Penninger: Nature Vol 440 (2006).

DOI: 10.1038/nature04524

Google Scholar

[6] I. Voronov, J.N. Heersche, R.F. Casper, H.C. Tenenbaum, M.F. Manolson: Biochem Pharmacol Vol 70 (2005), p.300.

Google Scholar

[7] C.J. Kovacs, M.J. Evans, B.M. Daly: Anticancer Res Vol 23 (2003), p.2625.

Google Scholar

[8] P. Boissy, T.L. Andersen, B.M. Abdallah, M. Kassem, T. Plesner, J.M. Delaisse: Cancer Res Vol 65 (2005), p.9943.

Google Scholar

[9] A. Sasaki, K. Ishikawa, N. Haraguchi, H. Inoue, T. Ishio, K. Shibata, M. Ohta, S. Kitano, M. Mori: Ann Surg Oncol Vol 14 (2007), p.1191.

DOI: 10.1245/s10434-006-9277-4

Google Scholar

[10] S. Mikami, K. Katsube, M. Oya, M. Ishida, T. Kosaka, R. Mizuno, S. Mochizuki, T. Ikeda, M. Mukai, Y. Okada: J Pathol Vol 218 (2009), p.530.

DOI: 10.1002/path.2567

Google Scholar

[11] H.K. Kim, S.G. Cho, J.H. Kim, T.K. Doan, Q.S. Hu, R. Ulhaq, E.K. Song, T.R. Yoon: Life Sci Vol 84 (2009), p.290.

Google Scholar