Syntheses of Tabular Cobalt Ferrite Crystal Using Non-Equilibrium Crystallization Conditions

Article Preview

Abstract:

Cobalt ferrite CoFe2O4 tabular crystals were synthesized via two-step coprecipitation using non-equilibrium crystallization conditions by supplying a solution of CoCl26H2O and FeCl36H2O and a solution containing NaOH at a later crystallization stage. Mean particle size of ~16.5 nm CoFe2O4 primary particles synthesized by coprecipitation showed non-oriented structure. Effect of heat treatment temperature on the microstructures of the final CoFe2O4 crystal was examined, orderly arranged plate-like tabular CoFe2O4 crystals were formed under calcination at 800 °C. Magnetic hyspersis loops measured at 300 and 5 K indicated the anisotropy in the tabular crystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-166

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Hashi, S. Yabukami, A. Maeda, N. Takada, S. Yanase, Y. Okazaki, J. Magn. Magn. Mater. 316 (2007) 465−467.

Google Scholar

[2] N.C. Pramanik, T. Fujii, M. Nakanishi. J. Takada, J. Mater. Sci. 40 (2005) 4169−4172.

Google Scholar

[3] G. Jian, Q.Y. Fu, D.X. Zhou, J. Magn. Magn. Mater. 324 (2012) 671−676.

Google Scholar

[4] V.C-. Flores, D.B-. Baques, R.F. Ziolo, Acta Materialia. 58 (2010) 764−769.

Google Scholar

[5] M. Zheng, J.G. Wan, Y. Wang, H. Yu, J.-M. Liu, X.P. Jiang, C.W. Nan, J. Appl. Phys. 95 (2004) 8069.

Google Scholar

[6] A. Rafferty, T. Prescott, D. Brabazon, Ceram. Inter. 34 (2008) 15−21.

Google Scholar

[7] D.X. Zhou, G. Jian, Y.X. Hu, Y.N. Zheng, S.P. Gong, H. Liu, Mater. Chem. Phys. 127 (2011) 316−321.

Google Scholar

[8] R.S. Turtelli, G.V. Duong, W. Nunes, R. Grossinger, M. Knobel, J. Magn. Magn. Mater. 320 (2008) e339−e342.

Google Scholar

[9] A.F. Junior, E.C. de O. Lima, M.A. Novak, P.R. Wells Jr, J. Magn. Magn. Mater. 308 (2007) 198−202

Google Scholar

[10] H. Liu, X. Sun, Q. Zhao, J. Xiao, S. Ouyang, Solid-state Electronics. 47 (2003) 2295−2298.

Google Scholar

[11] L. Wang, Q. Zhang, J. Alloy. Compd. 454 (2008) 410−414.

Google Scholar

[12] L. Wang, Q. Zhang, J. Alloy. Compd. 469 (2009) 251−257.

Google Scholar

[13] X. Ding, B. Shen, J. Zhai, F. Fu, J. Zhang, X. Yao, Journal of the Chinese ceramic society. 37 (8) (2009) 1282−1287.

Google Scholar

[14] M.C. Deng, S.L. Hsu, T.S. Chin, IEEE Magnet. 28 (5) (1992) 2385−2387.

Google Scholar

[15] S.R. Janasi, M. Emura, F.J.G. Landgraf, D. Rodrigues, J. Magn. Magn. Mater. 238 (2002) 168−172.

Google Scholar

[16] F. Gao, C.S. Zhang, X.C. Liu, L.H. Cheng, C.S. Tian, J. Eur. Ceram. Soc. 27 (2007) 3453−3458.

Google Scholar

[17] D.B. Hovis, K.T. Faber, Textured microstructures in barium hexaferrite by magnetic field assisted gelcasting and templated grain growth. Scripta Mater. 44 (2001) 2525−2529.

DOI: 10.1016/s1359-6462(01)00957-5

Google Scholar

[18] Y. Zhao, Q.-Z. Jiao, F. Li, D.G. Evans, X. Duan, Chinese journal of inorganic chemistry. 6 (11) (2001) 830−834.

Google Scholar

[19] K.A. Jackson, K.M. Beatty, M.V. Minke, J. Non-Cryst. Solids. 219 (1997) 100−109.

Google Scholar

[20] K.A. Jackson, K.M. Beatty, K.A. Gudgel, J. Cryst. Growth. 271 (2004) 481−194.

Google Scholar

[21] M.T. Clavaguera-Mora, N. Clavaguera, J. Alloy. Compd. 247 (1997) 93−97.

Google Scholar