[1]
V.I. Lutsyk, Analysis of the Liquidus Surfaces for the Ternary Systems, Pub. House Nauka, Moscow, 1987. (In Russian)
Google Scholar
[2]
V.I. Lutsyk, V.P. Vorobjeva, O.G. Sumkina, Quaternary Systems Phase Diagrams Simulation, Pub. House Nauka, Novosibirsk, 1992. (In Russian)
Google Scholar
[3]
V.I. Lutsyk, A.E. Zelenaya, A.M. Zyryanov, Multicomponent systems simulation by the software of "Diagrams Designer", J. Materials, Methods & Technologies, 2 (2008) 176-184.
Google Scholar
[4]
V.I. Lutsyk, A.M. Zyryanov, A.E. Zelenaya, Computer model of a T-x-y diagram for a ternary system with monotectic monovariant equilibrium, Russ. J. Inorg. Chem. 53 (2008) 792-798.
DOI: 10.1134/s0036023608050203
Google Scholar
[5]
L.S. Palatnik, A.I. Landau, Phase Equilibria in Multicomponent Systems, (Translation by J. Jone), Holt, Rinehart and Winston, New York, 1964.
Google Scholar
[6]
V.I. Lutsyk, Vorob'eva V.P., Computer-aided design of the crystallization schemes for the melt of ternary system with the incongruently melting binary compound by means of liquidus equations, J. of Inorganic Chemistry, 40 (1995) 1697-1703. (In Russian)
Google Scholar
[7]
V.I. Lutsyk, Vorob'eva V.P., Alloys design with the microstructure AI+AII+BII+AmCн+Вн and AI+ВII+AmСн+Вн in ternary system with incongruent binary compound by means of liquidus equations, J. of Phys. Chem., 71 (1997) 395-398. (In Russian).
Google Scholar
[8]
V. Danek, Physico-Chemical Analysis of Molten Electrolytes, Elsevier Science Ltd., 2006.
Google Scholar
[9]
V.I. Lutsyk, A.E. Zelenaya, V.V. Savinov, Melt solidification in the ceramic system CaO-Al2O3-SiO2, IOP Conf. Ser.: Mater. Sci. Eng., 18 (2011) 1-4.
DOI: 10.1088/1757-899x/18/11/112005
Google Scholar
[10]
V.I. Lutsyk, V.P. Vorob'eva, A.M. Zyryanov, Contradictions between 3-phase region eutectical and peritectical fragments borders determination methods in monographs by A.Prince and D.Petrov, J. Guangdong Non-Ferrous Met. 15 (2005) Р. 174-178.
Google Scholar
[11]
V.I. Lutsyk, A.E. Zelenaya, A.M. Zyryanov, Specific features of the crystallization of melts in systems with a transition from syntectic equilibrium to monotectic equilibrium, Crystallogr. Rep. 54 (2009) 1300-1307.
DOI: 10.1134/s1063774509070281
Google Scholar
[12]
V.I. Lutsyk, A.E. Zelenaya. Crystallization paths in SiO2-Al2O3-CaO system as a genotype of silicate materials, IOP Conf. Ser.: Mater. Sci. Eng., 2013 (to be published).
DOI: 10.14382/epitoanyag-jsbcm.2013.7
Google Scholar
[13]
V.I. Lutsyk, A.E. Zelenaya, Crystallization Paths and Microstructure Formation in Ternary Oxide Systems with Stoichiometric Compounds, Solid State Phenomena, 2013 (to be published).
DOI: 10.4028/www.scientific.net/ssp.200.73
Google Scholar
[14]
V.I. Lutsyk, Crystallization path as a genotype of multicomponent material, Bulletin of the Buryat Scientific Centre of the Russian Academy of Sciences, 5 (2012) 78-97.
Google Scholar
[15]
F. Lea, Lea's Chemistry of Cement and Concrete, Elsevier Ltd, London, 1998.
Google Scholar
[16]
M.-N. de Noirfontaine, S. Tusseau-Nenez, C. Girod-Labianca, V. Pontikis, Calphad formalism for Portland clinker: Thermodynamic models and databases, J. Mat. Sci. 47 (2012) 1471-1479.
DOI: 10.1007/s10853-011-5932-7
Google Scholar