[1]
M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf. A Novel Approach to Temporary Stenting: Degradable Cardiovascular Stents Produced from Corrodible Metal—Results 6–18 Months after Implantation into New Zealand White Rabbits,. Heart 86, 2001, 563–9.
DOI: 10.1136/heart.86.5.563
Google Scholar
[2]
H. Hermawan, H. Alamdari, D. Mantovani, and D. Dube. Iron-Manganese: New Class of Metallic Degradable Biomaterials Prepared by Powder Metallurgy,. Powder Metallurgy vol. 51 no. 1, 2008, 38-45.
DOI: 10.1179/174329008x284868
Google Scholar
[3]
B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich. Biocorrosion of Magnesium Alloys: A New Principle in Cardiovascular Implant Technology?,. Heart 89, 2003, 651–6.
DOI: 10.1136/heart.89.6.651
Google Scholar
[4]
P. Peeters, M. Bosiers, J. Verbist, K. Deloose, and B. Heublein. Preliminary Results after Application of Absordable Metal Stents in Patients with Critical Limb Ischemia,. J Endovasc Ther 12, 2005, 1–5.
DOI: 10.1583/04-1349r.1
Google Scholar
[5]
J. Levesque, H. Hermawan, D. Dube, and D. Mantovani. Design of a Pseudo-Physiological Test Bench Specific to the Development of Biodegradable Metallic Biomaterials,. Acta Biomaterialia 4, 2008, 284-295.
DOI: 10.1016/j.actbio.2007.09.012
Google Scholar
[6]
G. Mani, M. D. Feldman, D. Patel, and C. M. Agrawal. Coronary Stents: A Materials Perspective,. Biomaterials 28, 2007, 1689-1710.
DOI: 10.1016/j.biomaterials.2006.11.042
Google Scholar
[7]
S. Harjanto, Y. Pratesa, B. Suharno, and J. Syarif. Corrosion Behavior of Fe-Mn-C Alloy as Degradable Materials Candidate Fabricated via Powder Metallurgy Process,. Advanced Materials Research 576, 2012, 386-389.
DOI: 10.4028/www.scientific.net/amr.576.386
Google Scholar
[8]
ASTM B962-08. ASTM B962-08 Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle,. ASTM International 02. 05, (2008).
DOI: 10.1520/b0962-17
Google Scholar
[9]
ASTM G5–94. ASTM G5–94 Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements,. ASTM International 03. 02, (1994).
Google Scholar
[10]
ASTM G31-72. ASTM G31-72 Practice for Laboratory Immersion Corrosion Testing of Metals,. ASTM International 03. 02, 2004. Print.
Google Scholar
[11]
A. Šalak, M. Selecká, and R. Bureš. Manganese in ferrous powder metallurgy,. Powder Metallurgy Progress Vol. 1 No. 2, (2001).
DOI: 10.1007/978-1-907343-75-9
Google Scholar
[12]
F. V. Lenel. 1980. Metal powder Industri Federation, Powder metallurgy: Principle and Aplications, Princeton, New Jersey.
Google Scholar