Properties of Fe-Mn-C Alloy as Degradable Biomaterials Candidate for Coronary Stent

Article Preview

Abstract:

The development of biomaterial has reached biodegradable stage. Biodegradable means it can be degraded after certain period of time after implantation and cause no harm for the system. Degradable Biomaterial has the potential to be used as Coronary Stent to minimize the risk from thrombosis issue. Thrombosis is a symptom of body defense where will be a clots blood effect around stent area. The formation of clots blood will disturb a blood flow in artery and it will result a restenosis effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

210-214

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf. A Novel Approach to Temporary Stenting: Degradable Cardiovascular Stents Produced from Corrodible Metal—Results 6–18 Months after Implantation into New Zealand White Rabbits,. Heart 86, 2001, 563–9.

DOI: 10.1136/heart.86.5.563

Google Scholar

[2] H. Hermawan, H. Alamdari, D. Mantovani, and D. Dube. Iron-Manganese: New Class of Metallic Degradable Biomaterials Prepared by Powder Metallurgy,. Powder Metallurgy vol. 51 no. 1, 2008, 38-45.

DOI: 10.1179/174329008x284868

Google Scholar

[3] B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, and A. Haverich. Biocorrosion of Magnesium Alloys: A New Principle in Cardiovascular Implant Technology?,. Heart 89, 2003, 651–6.

DOI: 10.1136/heart.89.6.651

Google Scholar

[4] P. Peeters, M. Bosiers, J. Verbist, K. Deloose, and B. Heublein. Preliminary Results after Application of Absordable Metal Stents in Patients with Critical Limb Ischemia,. J Endovasc Ther 12, 2005, 1–5.

DOI: 10.1583/04-1349r.1

Google Scholar

[5] J. Levesque, H. Hermawan, D. Dube, and D. Mantovani. Design of a Pseudo-Physiological Test Bench Specific to the Development of Biodegradable Metallic Biomaterials,. Acta Biomaterialia 4, 2008, 284-295.

DOI: 10.1016/j.actbio.2007.09.012

Google Scholar

[6] G. Mani, M. D. Feldman, D. Patel, and C. M. Agrawal. Coronary Stents: A Materials Perspective,. Biomaterials 28, 2007, 1689-1710.

DOI: 10.1016/j.biomaterials.2006.11.042

Google Scholar

[7] S. Harjanto, Y. Pratesa, B. Suharno, and J. Syarif. Corrosion Behavior of Fe-Mn-C Alloy as Degradable Materials Candidate Fabricated via Powder Metallurgy Process,. Advanced Materials Research 576, 2012, 386-389.

DOI: 10.4028/www.scientific.net/amr.576.386

Google Scholar

[8] ASTM B962-08. ASTM B962-08 Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle,. ASTM International 02. 05, (2008).

DOI: 10.1520/b0962-17

Google Scholar

[9] ASTM G5–94. ASTM G5–94 Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements,. ASTM International 03. 02, (1994).

Google Scholar

[10] ASTM G31-72. ASTM G31-72 Practice for Laboratory Immersion Corrosion Testing of Metals,. ASTM International 03. 02, 2004. Print.

Google Scholar

[11] A. Šalak, M. Selecká, and R. Bureš. Manganese in ferrous powder metallurgy,. Powder Metallurgy Progress Vol. 1 No. 2, (2001).

DOI: 10.1007/978-1-907343-75-9

Google Scholar

[12] F. V. Lenel. 1980. Metal powder Industri Federation, Powder metallurgy: Principle and Aplications, Princeton, New Jersey.

Google Scholar