High Sensitive Nanocrystal Titanium Nitride EG-FET pH Sensor

Article Preview

Abstract:

Solid state pH-sensor device with high efficiency has successfully prepared by using TiN thin film as sensing membrane of extended gate field effect transistor (EG-FET) device. This research has described the physical properties and sensing characteristics of TiN membrane thin film which deposited on SiO2/Si substrate through reactive D.C. magnetron sputtering system. Thenanocrytal-TiNwith anatasestructure depended on substrate heating conditions was revealed from glancing angle x-ray diffraction. The IDS-VGS measurement in the standard buffer solutions showed that the sensitivity of fabricated TiN-EGFET pH deviceis 59.82mV/pH.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-236

Citation:

Online since:

September 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Bergveld, Development of an ion-sensitive solid-state device for neurophysiological measurements, IEEE T. Bio-med. Eng. 17 (1970) 70–71.

DOI: 10.1109/tbme.1970.4502688

Google Scholar

[2] J.-L. Chiang, J.-C. Chou and Y.-C. Chen, Sensitivity and Hysteresis Properties of a-WO3, Ta2O5, and a-Si:H Gate Ion-sensitive Field-effect Transistors, Opt. Eng. 41(8) (2002) 2032–2038.

Google Scholar

[3] J. C. Chou and Y. F. Wang, Study on the temperature dependence of the hysteresis for the a Si:H gate pH-ISFET, Mater. Chem. Phys. 70(1) (2001) 107–111.

Google Scholar

[4] J.-C. Chou, C.-Y. Weng and H.-M. Tsai, Study on the temperature effects of Al2O3 gate pH-ISFET, Sensor Actuat. B-Chem. 81(2–3) (2002) 152–157.

DOI: 10.1016/s0925-4005(01)00945-5

Google Scholar

[5] L.-T. Yin, J.-C. Chou, W.-Y. Chung, T.-P. Sun and S.-K. Hsiung, Characteristics of silicon nitride after O2 plasma surface treatment for pH-ISFET applications, IEEE T. Bio-med. Eng. 48(3) (2001) 340–344.

DOI: 10.1109/10.914797

Google Scholar

[6] J. C. Chou and Y. F. Wang, Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method, Sensor. Actuat. B-Chem. 86(1) (2002) 58–62.

DOI: 10.1016/s0925-4005(02)00147-8

Google Scholar

[7] M. Lahav, A. B. Kharitonov and I. Willner, Imprinting of Chiral Molecular Recognition Sites in Thin TiO2 Films Associated with Field-Effect Transistors: Novel Functionalized Devices for Chiroselective and Chirospecific Analyses, Chem-Eur. J. 7(18) (2001) 3992–3997.

DOI: 10.1002/1521-3765(20010917)7:18<3992::aid-chem3992>3.0.co;2-g

Google Scholar

[8] J. van der spiegel, I. Lauks, P. Chan and D. Babic, The extended gate chemically sensitive field effect transistor as multi-species microprobe, Sensor Actuat. 4 (1983) 291–298.

DOI: 10.1016/0250-6874(83)85035-5

Google Scholar

[9] J.-C. Chou and C.-W. Chen, Fabrication and Application of Ruthenium-Doped Titanium Dioxide Films as Electrode Material for Ion-Sensitive Extended-Gate FETs, IEEE Sens. J. 9(3) (2009) 277–284.

DOI: 10.1109/jsen.2008.2012221

Google Scholar

[10] Y.-H. Liao and J.-C. Chou, Fabrication and Characterization of a Ruthenium Nitride Membrane for Electrochemical pH Sensors, Sensor 9(4) (2009) 2478–2490.

DOI: 10.3390/s90402478

Google Scholar

[11] Y.-Q. Hou, D.-M. Zhuang, G. Zhang, M. Zhao, and M.-S. Wu, Influence of annealing temperature on the properties of titanium oxide thin film, Appl. Surf. Sci. 218(2003) 98–106.

DOI: 10.1016/s0169-4332(03)00569-5

Google Scholar

[12] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin and G. A. Rizzi, PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition , Thin Solid Films. 371(1–2) (2000) 126–131.

DOI: 10.1016/s0040-6090(00)00998-6

Google Scholar

[13] E. M. Guerra, G. R. Silva and M. Mulato, Extended gate field effect transistor using V2O5 xerogel sensing membrane by sol gel method, Solid State Sci. 11(2) (2009) 456–460.

DOI: 10.1016/j.solidstatesciences.2008.07.014

Google Scholar