[1]
G. Masini, L. Colace, G. Assanto, Si based optoelectronics for communications, Mater. Sci. Eng. B 89 (2002) 2-9.
Google Scholar
[2]
M. Kanoun, C. Busseret, A. Poncet, A. Souifi, T. Baron, E. Gautier, Electronic properties of Ge nanocrystals for non volatile memory applications, Solid-State Electron. 50 (2006) 1310-1314.
DOI: 10.1016/j.sse.2006.07.006
Google Scholar
[3]
V.S. Lysenko, Yu.V. Gomeniuk, Yu.N. Kozyrev, M. Yu. Rubezhanska, V.K. Sklyar, S.V. Kondratenko, Ye. Ye. Melnichuk, C. Teichert, Effect of Ge nanoislands on lateral photoconductivity of Ge-SiOx-Si structures, Advanced Materials Research 276 (2011).
DOI: 10.4028/www.scientific.net/amr.276.179
Google Scholar
[4]
A.A. Shklyaev, M. Ichikawa, Extremely dense arrays of germanium and silicon nanostructures, Physics Uspekhi 51 (2008) 133-162.
Google Scholar
[5]
V.S. Lysenko, S.V. Kondratenko, Yu.N. Kozyrev, M. Yu. Rubezhanska, V.P. Kladko, Yu.V. Gomeniuk, O.Y. Gudymenko, Ye. Ye. Melnichuk, G. Grenet, N.B. Blanchard, Morphology and optical properties of tetragonal Ge nanoclusters grown on chemically oxidized Si(100) surfaces, Ukr. J. Phys. 57 (2012).
DOI: 10.1088/0268-1242/28/8/085009
Google Scholar
[6]
A.A. Shklyaev, M. Shibata, M. Ichikawa, High-density ultrasmall epitaxial Ge islands on Si(111) surfaces with a SiO2 coverage, Phys. Rev. B 62 (2000) 1540-1543.
DOI: 10.1103/physrevb.62.1540
Google Scholar
[7]
X.Y. Chen, Y.F. Lu, L.J. Tang, Y.H. Wu, B.J. Cho, X.J. Xu, J.R. Dong, W.D. Song, Annealing and oxidation of silicon oxide films prepared by plasma-enhanced chemical vapor deposition, J. Appl. Phys. 97 (2005) 014913-10.
DOI: 10.1063/1.1829789
Google Scholar
[8]
F.N. Hooge, 1/f Noise Sources, IEEE Trans. Electron Devices 41 (1994) 1926-(1935).
DOI: 10.1109/16.333808
Google Scholar
[9]
A.L. McWhorter, 1/f noise and related surface effects in germanium, Ph.D. dissertation, MIT, Cambridge, MA, (1955).
Google Scholar
[10]
L.K.J. Vandamme, R.G.M. Penning De Vries, Correlation between MOST 1/f noise and CCD transfer inefficiency, Solid-State Electron. 28 (1985) 1049-1056.
DOI: 10.1016/0038-1101(85)90038-3
Google Scholar
[11]
A. Stesmans, P. Somers, V.V. Afanas'ev, C. Claeys, E. Simoen, Inherent density of point defects in thermal tensile strained (100)Si/SiO2 entities probed by electron spin resonance, Appl. Phys. Lett. 89 (2006) 152103-4.
DOI: 10.1063/1.2339033
Google Scholar
[12]
R. Peibst, J.S. de Sousa, K.R. Hofmann, Determination of the Ge-nanocrystal/SiO2 matrix interface trap density from the small signal response of charge stored in the nanocrystals, Phys. Rev. B 82 (2010) 195415-12.
DOI: 10.1103/physrevb.82.195415
Google Scholar
[13]
V.A. Gritsenko, Yu.P. Kostikov, N.A. Romanov, SiOx as a model medium with large-scale potential fluctuations, JETP Lett. 34 (1981) 3-6.
Google Scholar
[14]
N. Tomozeiu, Silicon oxide (SiOx, 0<x<2): a challenging material for optoelectronics, in: Prof. P. Predeep (Ed. ), Optoelectronics – Materials and Techniques, InTech, Croatia, 2011, pp.55-98.
DOI: 10.5772/20156
Google Scholar
[15]
A. Barranco, F. Yubero, J.P. Espinós, P. Groening, A.R. González-Elipe, Electronic state characterization of SiOx thin films prepared by evaporation, J. Appl. Phys. 97 (2005) 113714-8.
DOI: 10.1063/1.1927278
Google Scholar
[16]
M.B. Weissman, 1/f noise and other slow, nonexponential kinetics in condensed matter, Rev. Mod. Phys. 60 (1988) 537-571.
DOI: 10.1103/revmodphys.60.537
Google Scholar
[17]
P. Dutta, P. Dimon, P.M. Horn, Energy scales for noise processes in metals, Phys. Rev. Lett. 43 (1979) 646-649.
DOI: 10.1103/physrevlett.43.646
Google Scholar