Effect of Substrate Temperature on Structural and Morphological Properties of Indium Tin Oxide Nanocolumns Using RF Magnetron Sputtering

Article Preview

Abstract:

Indium tin oxide (ITO) nanocolumns were successfully deposited on both glass and silicon substrates at different substrate temperature from room temperature to 300°C by radio frequency (RF) magnetron sputtering system using an ITO target. The composition of the ITO target was 90% indium oxide and 10% tin oxide. Structures and morphological properties of ITO nanocolumns were investigated. X-ray diffraction (XRD) measurement revealed that the main preferred orientation was changed from (222) to (400) as the substrate temperature increased. The atomic force microscopy (AFM) reveals that the roughness values were increases as the substrate temperature increases. The cross sectional and top view field emission scanning electron microscopy (FESEM) images show that densely packed nanocolumn arrays were obtained from all the samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-16

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, Y. Cin Lin, S. C. Shei, H. M. Lo, H. Y. Lin, and J. C. Ke, IEEE J. Quantum Elect. Vol. 39 (2003), p.1439.

DOI: 10.1109/jqe.2003.818312

Google Scholar

[2] D. W. Kim, Y. J. Sung, J. W. Park, and G. Y. Yeom, Thin Solid Films Vol. 87 (2001), p.398.

Google Scholar

[3] R. H. Horng, D. s. Wuu, Y. C. Lien, and W. H. Lan, Appl. Phys. Lett. Vol. 79 (2001), p.2925.

Google Scholar

[4] J. O. Song and T. Y. Seong, Appl. Phys. Lett. Vol. 85 (2004), p.6374.

Google Scholar

[5] S. Y. Kim, H. W. Jang, and J. L. Lee, Apply. Phys. Lett. Vol. 82 (2003), p.61.

Google Scholar

[6] I. Adesida, D. G. Ballegeer, J. W. Seo, A. Ketterson, H. Chang, K. Y. Cheng, and T. Gessert, J. Vac. Sci. Technol. Vol. 9 (1991), p.3551.

Google Scholar

[7] C.H. Chiu, P.C. Yu, C.H. Chang, C.S. Yang, M.H. Hsu, H.C. Kuo, M.A. Tsai, Opt. Express Vol. 17 (2009), p.21250.

Google Scholar

[8] T. Minami, Semicond. Sci. Technol. Vol. 20 (2005), p.535.

Google Scholar

[9] H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, J. Appl. Phys. Vol. 86(1999), p.6451.

Google Scholar

[10] L. Kerkache, A. Layadi, E, Dogheche and D. Remiens, J. Phys. D: Appl. Phys. Vol. 39 (2006), p.184.

Google Scholar

[11] A. E. Hichou, A. Kachouane, J. L. Budendorff, M. Addou, J. Ebothe, M. Troyon and A. Bougrine, Thin Solid Films Vol. 458 (2004), p.263.

DOI: 10.1016/j.tsf.2003.12.067

Google Scholar

[12] L. J. Meng, A. Macarico and R. Martins, Vacuum, Vol. 46 (1995), p.673.

Google Scholar

[13] F. Kurdesau, G. Khripunov, A.F. da Cunha, M. Kaelin, A.N. Tiwari, J. Non-Cryst. Solids Vol. 352 (2006), p.1466.

DOI: 10.1016/j.jnoncrysol.2005.11.088

Google Scholar

[14] C.V.R. Vansant Kumar, A. Mansingh, J. Appl. Phys. Vol. 65 (1989), p.1270.

Google Scholar

[15] K. H. Lee, J. Appl. Phys. Vol. 95 (2004), p.586.

Google Scholar

[16] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. Vol. 4 (2004), p.1059.

Google Scholar