In Situ Growth of Mesoporous NiO Nanoplates on Graphene Matrix as Anode Material for Lithium-Ion Batteries

Article Preview

Abstract:

Graphene-NiO nanocomposites were prepared via a solvothermal method. The nanostructure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). SEM and TEM results indicated that NiO nanoplates distributed homogeneously on graphene sheets. The electrochemical properties of the samples as active anode materials for lithium-ion batteries were examined by constant current charge-discharge cycling. With graphene as conductive matrix, homogeneous distribution of NiO nanoplates can be ensured and volume changes of thenanocomposite during the charge and discharge processes can be accomodated effectively, which results in good electrochemical performance of the composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

56-60

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.G. Bruce, B. Scrosati and J.M. Tarascon: Angew Chem Int Ed 47 (2008), 2930.

Google Scholar

[2] B. Dunn, H. Kamath and J.M. Tarascon: Science 334 (2011), 928.

Google Scholar

[3] J. Goodenough and Y. Kim: Chem. Mater. 22 (2010), 587.

Google Scholar

[4] M. Winter, J. O. Besenhard, M. E. Spahr and P. Novak: Adv. Mater. 10 (1998), 725.

Google Scholar

[5] C. Liu, F. Li, L. P. Ma and H. M. Cheng: Adv. Mater. 22 (2010), 28.

Google Scholar

[6] S.M. Paek, E. Yoo and I. Honma: Nano Lett 9 (2009), 72.

Google Scholar

[7] M.B. Zheng, D.F. Qiu, B. Zhao, L.Y. Ma, X.R. Wang, Z. X Lin., L.J. Pan, Y.D. Zheng and Y. Shi: RSC Adv 3 (2013) 699.

Google Scholar

[8] Z.S. Wu, W.C. Ren, L. Wen, L.B. Gao, J.P. Zhao, Z.P. Chen, G.M. Li. Zhou and H.M. Cheng: ACS Nano 4 (2010), 3187.

Google Scholar

[9] D.F. Qiu, Z.J. Xu, M.B. Zheng, B. Zhao, L.J. Pan, L. Pu and Y. Shi: J Solid State Electr 16 (2012), 1889.

Google Scholar

[10] H.L. Wang, L.F. Cui, Y. Yang, H.S. Casalongue, J.T. Robinson, Y.Y. Liang, Y. Cui and H.J. Dai: J Am Chem Soc 132 (2010), 13978.

Google Scholar

[11] D.F. Qiu, B. Zhao, Z.X. Lin, L. Pu, L.J. Pan and Y. Shi: Mater Lett 105 (2013), 242.

Google Scholar

[12] Y. Zhu, Y.J. Bai , F.D. Han, Y.X. Qi, N. Lun, B. Yao and J.X. Zhan: Mater Lett 65 (2011), 3157.

Google Scholar

[13] Z.G. Yin and Q.D. Zheng: Adv Energy Mater 2 (2012), 179.

Google Scholar

[14] S.B. Yang, X.L. Feng, X.C. Wang, K. Tang, J. Maier and K. Müllen: Angew Chem Int Ed 49 (2010), 4795.

Google Scholar

[15] S.L. Chou, J.Z. Wang, D. Wexler, K. Konstantinov, C. Zhong, H.K. Liu and S.X. Dou: J Mater Chem; 20 (2010), (2092).

Google Scholar

[16] P. Poizot, S. Laruelle, . S Grugeon, L. Dupont and J.M. Tarascon: Nature 407 (2000), 496.

DOI: 10.1038/35035045

Google Scholar

[17] Z.Y. Wang, D.Y. Luan, S. Madhavi, Y. Hu and X.W. Lou: Energy Environ Sci 5 (2012), 5252.

Google Scholar

[18] Q.L. Du, M.B. Zheng, L.F. Zhang, Y.W. Wang, J.H. Chen, L.P. Xue, W.J. Dai, G.B. Ji and J.M. Cao: Electrochim Acta 55 (2010), 3897.

Google Scholar

[19] J.C. Park, J. Kim, H. Kwon and H. Song: Adv Mater 21 (2009), 803.

Google Scholar

[20] Y.Q. Sun, Q. Wu and G.Q. Shi: Energy Environ Sci 5 (2011), 1113.

Google Scholar