The Effect of Backbone Disorder on Electrical Conductivity of Poly(dG)-Poly(dC) DNA Molecule at Room Temperature

Article Preview

Abstract:

Tight binding Hamiltonian model has been used in studying the influence of the surrounding medium on electrical conductivity of a Poly (dG)-Poly (dC) DNA molecule. This effect is studied in room temperature by taking into account twisting motion with two different low frequencies separately. Transfer matrix technique and scattering matrix method have been employed simultaneously. The current voltage characteristics and the differential conductance show that as the backbone disorder increases, the current decreases and the threshold voltage rises. However as the backbone disorder continues to increase, the reverse of the above phenomenon is observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

357-361

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.J. Dandliker, R.E. Holmlin and J.K. Barton: Science Vol. 275 (1997), p.1465.

Google Scholar

[2] E.M. Boon, A.L. Livingston, N.H. Chmiel, S.S. David and J.K. Barton: Proc. Natl. Acad. Sci. U. S. A. Vol. 100 (2003), p.12543.

Google Scholar

[3] S. Nokhrin, M. Baru and J.S. Lee: Nanotechnology Vol. 18 (2007), p.095205.

Google Scholar

[4] K. Keren, R.S. Berman, E. Buchstab, U. Sivan and E. Braun: Science Vol. 302 (2003), p.1380.

Google Scholar

[5] H. Yan, S.H. Park, G. Finkelstein, J.H. Reif and T.H. LaBean: Science Vol. 301 (2003), p.1882.

Google Scholar

[6] P.J. de Pablo, F. Moreno-Herrero, J. Colchero, J.G. Herrero, P. Herrero, A.M. Baro, P. Ordejon, J.M. Soler and E. Artacho: Phys. Rev. Lett. Vol. 85 (2000), p.4992.

DOI: 10.1103/physrevlett.85.4992

Google Scholar

[7] D. Porath, A. Bezryadin, S. De Vries and C. Dekker: Nature Vol. 403 (2000), p.635.

Google Scholar

[8] H. -W. Fink and C. Schönenberger: Nature Vol. 398 (1999), p.407.

Google Scholar

[9] A.Y. Kasumov, M. Kociak, S. Gueron and B. Reulet: Science Vol. 291 (2001), p.280.

Google Scholar

[10] S. Roche: Phys. Rev. Lett. Vol. 91 (2003), p.108101.

Google Scholar

[11] W. Ren, J. Wang, Z. Ma and H. Guo: Phys. Rev. B Vol. 72 (2005), p.035456.

Google Scholar

[12] Z. Yu and X. Song: Phys. Rev. Lett. Vol. 86 (2001), p.6018.

Google Scholar

[13] J.X. Zhong, in: Tech. Proc. 2003 Nanotechnol. Conf. Trade Show Vol. 2, Nano Science and Technology Institute (2003).

Google Scholar

[14] A. -M. Guo, S. -J. Xiong, Z. Yang and H. -J. Zhu: Phys. Rev. E Vol. 78 (2008), p.061922.

Google Scholar

[15] A. -M. Guo, Z. Yang, H. -J. Zhu and S. -J. Xiong: J. Phys. Condens. Matter Vol. 22 (2010), p.065102.

Google Scholar

[16] E. Díaz: J. Chem. Phys. Vol. 128 (2008), p.175101.

Google Scholar

[17] R. Bruinsma, G. Grüner, M.R. D'Orsogna and J. Rudnick: Phys. Rev. Lett. Vol. 85 (2000), p.4393.

Google Scholar

[18] E. Maciá: Phys. Rev. B Vol. 80 (2009), p.125102.

Google Scholar

[19] Y. Zhu, C. -C. Kaun and H. Guo: Phys. Rev. B Vol. 69 (2004), p.245112.

Google Scholar

[20] D. Klotsa, R.A. Römer and M.S. Turner: Biophys. J. Vol. 89 (2005), p.2187.

Google Scholar

[21] H. -Y. Lee, H. Tanaka, Y. Otsuka, K. -H. Yoo, J. -O. Lee and T. Kawai: Appl. Phys. Lett. Vol. 80 (2002), p.1670.

Google Scholar

[22] Y. -S. Jo, Y. Lee and Y. Roh: Mater. Sci. Eng. C Vol. 23 (2003), p.841.

Google Scholar

[23] A.A. Voityuk: J. Phys. Chem. B Vol. 113 (2009), p.14365.

Google Scholar

[24] D. Kurnia Suhendro, E. Yudiarsah and R. Saleh: Phys. B Condens. Matter Vol. 405 (2010), p.4806.

Google Scholar

[25] S. Datta: Electronic Transport in Mesoscopic System (Cambridge University Press, United Kingdom 1995).

Google Scholar

[26] H. Taniyama and A. Yoshii: Phys. Rev. B Vol. 53 (1996), p.9993.

Google Scholar