[1]
F.P. Incropera, D.P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley, NJ (2002).
Google Scholar
[2]
J. Wei, A. Chan, D. Copeland, Measurement of vapor chamber performance, IEEE Semiconductor Thermal Measurement and Management Symposium, pp.191-194, (2003).
DOI: 10.1109/stherm.2003.1194361
Google Scholar
[3]
J.P. Gwinn, R.L. Webb, Performance and testing of thermal interface materials, Microelectronics Journal, vol. 34, pp.215-222, (2003).
DOI: 10.1016/s0026-2692(02)00191-x
Google Scholar
[4]
L. Zhao, P.E. Phelan, Thermal contact conductance across filled polyimide films at cryogenic temperatures, Cryogenics, vol. 39, pp.803-809, (1999).
DOI: 10.1016/s0011-2275(99)00095-8
Google Scholar
[5]
S. Chou and M. Huang, Reducing Thermal Contact Resistance by Adding Metal Powder in Thermal Grease, Proceeding of the 7th International Symposium on Transport Phenomena in Manufacturing Processes, pp.230-235, (1994).
Google Scholar
[6]
W.S. Miller, F.J. Humphreys, Strengtening mechanisms in particulate metal matrix composites, Scripta metallurgica et materialia, vol. 25, pp.33-38, (1991).
DOI: 10.1016/0956-716x(91)90349-6
Google Scholar
[7]
R.H. Davis, The Effective Thermal Conductivity of a Composite Material with Spherical Inclusions, International Journal of Thermophysics, vol. 7, pp.609-620, (1986).
DOI: 10.1007/bf00502394
Google Scholar
[8]
S. Lu, H. Lin, Effective Conductivity of Composites Containing Aligned Spherical Inclusions of Finite Conductivity, Journal of Applied Physics, vol. 79, pp.6761-6769, (1996).
DOI: 10.1063/1.361498
Google Scholar
[9]
J. Wang, J.K. Carson, M.F. North, D.J. Cleland , A new approach to modelling the effective thermal conductivity of heterogeneous materials, International Journal of Heat and Mass Transfer, vol. 49, pp.3075-3083.
DOI: 10.1016/j.ijheatmasstransfer.2006.02.007
Google Scholar
[10]
A. Majumdar, Microscale Energy Transport in Solids, Microscale Energy Transport, pp.1-94, (1998).
Google Scholar
[11]
P.G. Klemens, Thermal Conductivity and Lattice Vibrational Modes, Solid State Physics, Vol. 7, (1958), pp.1-98.
DOI: 10.1016/s0081-1947(08)60551-2
Google Scholar
[12]
A. Sergeev, B.S. Karasik, N.G. Ptitsina, G.M. Chulkova K.S. Il'in, E.M. Gershenzon, Electron-phonon interaction in disordered conductors, Department of Physics 263-264 (1999) 190-192.
DOI: 10.1016/s0921-4526(98)01323-4
Google Scholar
[13]
A. A. Joshi, A, Majumdar Transient ballistic and diffusive phonon heat transport in thin films, Department of Mechanical and EnvironmentaI Engineering, (1993).
Google Scholar
[14]
Y. S. Ju and K. E. Goodsona, Phonon scattering in silicon films with thickness of order 100 nm, Department of Mechanical Engineering, VOL 74, (1999).
Google Scholar
[15]
Sandip Mazumder, Arunava Majumdar, Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization, Journal of Heat Transfer, Vol. 123 p.759, AUGUST (2001).
DOI: 10.1115/1.1377018
Google Scholar
[16]
A. Sergeev, B.S. Karasik, M. Gershenson, V. Mitin, Electron–phonon scattering in disordered metallic films, Department of Physics, 316–317, (2002).
DOI: 10.1016/s0921-4526(02)00499-4
Google Scholar
[17]
M. G. HOLLAND, Analysis of Lattice Thermal Conductivity, Raytheon Reserch Division, vol 132, August (1963).
Google Scholar
[18]
T Lewis, L Nielsen, Dynamic mechanical properties of particulate-filled polymers. J Appl Polym Sci (1970); 14: 1449.
Google Scholar
[19]
Y Agari, T. Uno, Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J Appl Poly Sci (1985); 30: 2225–35.
DOI: 10.1002/app.1985.070300534
Google Scholar