Study of N-TiO2 Photocatalysts and their Catalytic Activities under Simulated Sunlight

Article Preview

Abstract:

N doped TiO2 was prepared by methods of sol-gel, precipitation, and temperature programmed nitridation (TPN) with NH3, respectively. The physical structure and chemical properties of the prepared N-TiO2 were characterized by DRS, XRD, XPS, and EPR spectra techniques. The result of XRD illustrated that all the samples were anatase, and no rutile or brookite phase. XPS and EPR indicated that N-TiO2 prepared by precipitate exist Ti3+ on the surface of TiO2. DRS pattern demonstrated N doping lead to the band gap narrow of all the samples, and the smallest band-gap energy of the samples prepared by precipitation was about 2.45eV. The photocatalytic activities were investigated by the photocatalytic degradation of methylene blue (MB) under simulated sunlight, and the highest activities reached to 75% during 120min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-31

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Fujishima A, Honda K. Nature Vol. 238 (1972), pp.37-38.

Google Scholar

[2] M. Hamadanian, A. Reisi-Vanani. Desalination Vol. 281 (2011), p.319–324.

Google Scholar

[3] Asahi. R.; Morikawa. T.; Ohwaki. T.; Aoki, K.; Taga, Y. Science Vol. 293 (2001), p.269.

Google Scholar

[4] Irie, H.; Watanabe, Y.; Hashimoto, K. J. Phys. Chem. B Vol. 107 (2003), p.5483.

Google Scholar

[5] Livraghi, S. L.; Paganini, M. C.; Giamello, E.; Selloni, A.; Valentin, C. D.; Pacchioni, G. J. Am. Chem. Soc. Vol. 128 (2006), p.15666.

DOI: 10.1021/ja064164c

Google Scholar

[6] Jun Fang, Fang Wang, Kun Qian, Phys. Chem. C Vol. 112 (2008), p.18150–18156.

Google Scholar

[7] Hiromasa Nishikiori; Yosuke Fukasawa. Res Chem Intermed , Vol. 37 (2011), p.869–881.

Google Scholar

[8] Jirapat Ananpattarachaia, Puangrat Kajitvichyanukul. Journal of Hazardous Materials Vol. 168 (2009), p.253–261.

Google Scholar

[9] Oliver Diwald, Tracy L. Thompson, J. Phys. Chem. B Vol. 108 (2004), pp.6004-6008.

Google Scholar

[10] Farheen.N. Sayed O.D. Jayakumar,R. Sasikala, J. Phys. Chem. C Vol. 116 (2012), p.12462−12467.

Google Scholar

[11] Shi, Z. M.; Ye, X. Y.; Liang, K.M.; Gu, S. R.; Pan, F. J. Mater. Sci. Lett. Vol. 22 (2003), p.22, 1255.

Google Scholar

[12] C. Burda, Y. B. Lou, X. B. Chen, A. C. S. Samia, J. Stout, and J. L. Gole, Nano Lett., Vol. 38 (2003), p.1049–51.

Google Scholar

[13] Ying Wang, Yan Wang, Yanling Meng, Hanming Ding, J. Phys. Chem. C Vol. 112 (2008), pp.6620-6626.

Google Scholar

[14] Xudong Jiang, Yupeng Zhang, Jing Jiang, Yongsen Rong, J. Phys. Chem. C Vol. 116 (2012), p.22619−22624.

Google Scholar

[15] Y. Nakaoka, Y. Nosaka, J. Photochem. Photobiol. A Vol. 110 (1997), p.299.

Google Scholar

[16] Kongkiat Suriye, Piyasan Praserthdam, Bunjerd Jongsomjit, Applied Surface Science Vol. 253 (2007), p.3849–3855.

Google Scholar

[17] Fan Zuo, Le Wang, Tao Wu, Zhenyu Zhang, Dan Borchardt, and Pingyun Feng, J. AM. CHEM. SOC. Vol. 132 (2010), p.11856–11857.

Google Scholar