Review of Hydrogen Production from the Steam-Iron Process by Chemical-Looping Combustion

Article Preview

Abstract:

Chemical looping hydrogen production (CLH) is a promising method for pure hydrogen production, which not only can improve energy conversion efficiency and reduce environmental pollution, but also can separate carbon dioxide. This paper try to review the present chemical looping hydrogen process development on the screening of oxygen carrier particles of gaseous fuel and solid fuel, the design of proper reactors, and the system simulation. The design of solid fuel CLH system and the development of oxygen carriers with high reactivity and abrasion resistance for solid fuel at high temperature and pressure will be future research focuses.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 953-954)

Pages:

966-969

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA). http: /www. esrl. noaa. gov/gmd/ccgg/trends.

Google Scholar

[2] A. MESSERSCHMITT, U.S. Patents 971, 206. (1910).

Google Scholar

[3] H. LANE, U.S. Patents 1, 078, 686. (1913).

Google Scholar

[4] H.C. Reed, U.S. Patents 2, 635, 947. (1953).

Google Scholar

[5] P. Chiesa, G. Lozza, A. Malandrino, M. Romano and V. Piccolo: Int J Hydrogen Energ Vol. 33 (2008), p.2233.

Google Scholar

[6] P. Gupta, L.G. Velazquez-Vargas and L. -S. Fan: Energ Fuel Vol. 21 (2007), p.2900.

Google Scholar

[7] F. Li, H.R. Kim, D. Sridhar, F. Wang, L. Zeng, J. Chen and L.S. Fan: Energ Fuel Vol. 23 (2009), p.4182.

Google Scholar

[8] K. Svoboda, A. Siewiorek, D. Baxter, J. Rogut and M. Puncochar: Chem Pap Vol. 61 (2007), p.110.

Google Scholar

[9] K. Otsuka, C. Yamada, T. Kaburagi and S. Takenaka: Int J Hydrogen Energ Vol. 28 (2003), p.335.

Google Scholar

[10] K. Otsuka, T. Kaburagi, C. Yamada and S. Takenaka: J Power Sources Vol. 122 (2003), p.111.

Google Scholar

[11] S. Takenaka, N. Hanaizumi, V.T.D. Son and K. Otsuka: J Catal Vol. 228 (2004), p.405.

Google Scholar

[12] K. Urasaki, N. Tanimoto, T. Hayashi, Y. Sekine, E. Kikuchi and M. Matsukata: Applied Catalysis A: General Vol. 288 (2005), p.143.

DOI: 10.1016/j.apcata.2005.04.023

Google Scholar

[13] G.T. Jin, H.J. Ryu, S.H. Jo, S.Y. Lee, S.R. Son and S.D. Kim: Korean J Chem Eng Vol. 24 (2007), p.542.

Google Scholar

[14] V. Galvita and K. Sundmacher: Applied Catalysis A: General Vol. 289 (2005), p.121.

Google Scholar

[15] H. Kindermann, M. Kornberger, J. Hierzer, J. Besenhard and V. Hacker: J Power Sources Vol. 145 (2005), p.697.

DOI: 10.1016/j.jpowsour.2004.12.074

Google Scholar

[16] C.R. Mueller, C.D. Bohn, Q. Song, S.A. Scott and J.S. Dennis: Chem Eng J Vol. 166 (2011), p.1052.

Google Scholar

[17] C.D. Bohn, C.R. Müller, J.P. Cleeton, A.N. Hayhurst, J.F. Davidson, S.A. Scott and J.S. Dennis: Ind Eng Chem Res Vol. 47 (2008), p.7623.

Google Scholar

[18] P. Gupta, L.G. Velazquez-Vargas and L.S. Fan: Energ Fuel Vol. 21 (2007), p.2900.

Google Scholar

[19] J.B. Yang, N.S. Cai and Z.S. Li: Energ Fuel Vol. 22 (2008), p.2570.

Google Scholar

[20] J.P.E. Cleeton, C.D. Bohn, C.R. Muller, J.S. Dennis and S.A. Scott: Int J Hydrogen Energ Vol. 34 (2009), p.1.

Google Scholar

[21] L.S. Fan, F.X. Li and S. Ramkumar: Particuology Vol. 6 (2008), p.131.

Google Scholar

[22] S.Y. Chen, Z.P. Xue, D. Wang and W.G. Xiang: Int J Hydrogen Energ Vol. 37 (2012), p.8204.

Google Scholar

[23] S.Y. Chen, Z.P. Xue, D. Wang and W.G. Xiang: J Power Sources Vol. 215 (2012), p.89.

Google Scholar

[24] L.S. Fan and F.X. Li: Ind Eng Chem Res Vol. 49 (2010), p.10200.

Google Scholar