Continuous Hydrogen Production in a Novel Photo-Bioreactor with High Light Conversion Efficiency

Article Preview

Abstract:

A novel disk photo-bioreactor was employed to produce hydrogen continuously by Rhodopseudomonas faecalis RLD-53. The ability of hydrogen production was investigated in different feeding times and HRTs. The maximum total hydrogen yield in the photo-bioreactor reached 2.68 mol H2/mol acetate at 48h HRT and 4d feeding time. Experimental results indicated that feeding times and HRTs are two key factors determined biomass in the photo-bioreactor and hydrogen production capacity. Moreover, the photo-fermentation hydrogen production is strongly dependent on light energy supply, the light conversion efficiency of the novel photo-bioreactor was 1.6%, it is higher than that that of most of reported photobioreactors. Therefore, these results demonstrated that the disk photo-bioreactor was a useful and efficient reactor in entire continuous hydrogen production.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 953-954)

Pages:

970-973

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Smitkova, F. Janíček, and J. Riccardi: International Journal of Hydrogen Energy vol. 36(2011), pp.7844-51.

Google Scholar

[2] C.N. Dasgupta, J. Gilbert, P. Lindblad, T. Heidorn, S. A . Borgvang, K. Skjanes, et al: Int J Hydrogen Energy vol. 35(2010) , pp.10218-38.

DOI: 10.1016/j.ijhydene.2010.06.029

Google Scholar

[3] H. Koku, ErogluI, U. Gunduz, M. Yucel, L. Turker: Int J Hydrogen Energy vol. 27(2002) , pp.1315-29.

Google Scholar

[4] G.J. Xie, B.F. Liu, W.Q. Guo, J. Ding, D.F. Xing, J. Nan, et al: International Journal of Hydrogen Energy vol. 37(2012), pp.13689-95.

Google Scholar

[5] N. Basak and D. Das: Biomass and Bioenergy vol. 33(2009), pp.911-9.

Google Scholar

[6] C. N. Dasgupta, J. Gilbert, P. Lindblad, T. Heidorn, S. A. Borgvang, K. Skjanes, et al. : International Journal of Hydrogen Energy vol. 35(2010) , pp.10218-38.

DOI: 10.1016/j.ijhydene.2010.06.029

Google Scholar

[7] C.Y. Chen, M.H. Yang, K.L. Yeh, C.H. Liu, and J.S. Chang: International Journal of Hydrogen Energy vol. 33(2008) , pp.4755-62.

Google Scholar

[8] N. Q Ren, B.F. Liu, J. Ding, G.J. Xie: Bioresour Technol vol. 100(2009): 484-7.

Google Scholar

[9] C. Chen, G. Saratale, C. Lee, P. Chen, and J. Chang: International Journal of Hydrogen Energy vol. 33(2008), pp.6886-95.

Google Scholar

[10] G.J. Xie, B.F. Liu, D.F. Xing, J. Ding, J. Nan, H.Y. Ren, et al.: International Journal of Hydrogen Energy vol. 37(2012), pp.13718-24.

Google Scholar

[11] K. Y. Show, D. J. Lee, and J. S. Chang: Bioresour Technol vol. 102(2011) , pp.8524-33.

Google Scholar

[12] E. Özgür, A. E. Mars, B. Peksel, A. Louwerse, M. Yücel, U. Gündüz, et al.: International Journal of Hydrogen Energy vol. 35(2010), pp.511-7.

DOI: 10.1016/j.ijhydene.2009.10.094

Google Scholar

[13] M.R. Tredici, P. Carlozzi , G.C. Zittelli , R. Materassi: Bioresour Technol vol. 38(1991), 153-9.

Google Scholar

[14] I. Eroglu, K. Aslan, U. Gunduz , M. Yucel , L. Turker, in: Zaborsky OR, edited by Biohydrogen. London, Plenum Press, NY(1998), pp.143-51.

Google Scholar

[15] T. Otsuki, S. Uchiyama, K. Fujiki, S. Fukunaga, In: Zaborsky OR, edited by Biohydrogen. London: Plenum Press, NY(1998), pp.369-74.

Google Scholar

[16] B.W. Kim, K.P. Chang, H.N. Chang : Bioprocess Eng vol. 17(1997) , p.343–8.

Google Scholar

[17] P.M. Vignais, B. Billoud: Chem Rev vol. 107(2007), pp.4206-72.

Google Scholar