Study of Multi-b-Value Diffusion-Weighted Imaging at 3.0 T for Measuring Renal Function of Patients with Chronic Renal Failure

Article Preview

Abstract:

To investigate the relationship between apparent diffusion coefficient (ADC) values measured by diffusion-weighted imaging (DWI) on a 3.0T MR unit and glomerular filtration rate (GFR) determined by renal imaging using Nuclear Medicine 99 Tcm-DTPA. 3.0T MRI DWI and 99 Tcm-DTPA renal imaging were simultaneously performed in 30 patients with chronic renal failure. The b values set for DWI imaging were 0, 200, 400, 600, 800 and 1000 s/mm2 and the ADC values of renal cortex were measured. 60 kidneys from the patients were classified into three groups according to the measurements of GFR: mildly impaired renal function, moderately impaired renal function and severely impaired renal function. ADC values of the three groups were compared to determine whether there existed statistic difference and the correlation between ADC values and GFR was also measured. Statistical difference was found in ADC values of the three groups and a positive correlation was identified between ADC values and GFR (r = 0.623). Multi-b-value diffusion-weighted MR imaging at 3.0 T can be used to assess renal filtration function.Abbreviation used: DWI, diffusion-weighted imaging; ADC, apparent diffusion coefficient; GFR, glomerular filtration rate; NEX, number of excitation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 998-999)

Pages:

320-324

Citation:

Online since:

July 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. M E Moseley, Y Cohen, J Kucharczyk, J Mintorovitch, H S Asgari, M F Wendland, J Tsuruda, and D Norman Radiology 1990 176: 2, 439-445.

DOI: 10.1148/radiology.176.2.2367658

Google Scholar

[2] Beaulieu, C. (2002), The basis of anisotropic water diffusion in the nervous system – a technical review. NMR Biomed., 15: 435–455. doi: 10. 1002/nbm. 782.

DOI: 10.1002/nbm.782

Google Scholar

[3] Normal aging in the central nervous system: quantitative MR diffusion-tensor analysis, Osamu Abe, Shigeki Aoki, Naoto Hayashi, Haruyasu Yamada, Akira Kunimatsu, Harushi Mori, Takeharu Yoshikawa, Toshiyuki Okubo, Kuni Ohtomo, Neurobiology of Aging - May 2002 (Vol. 23, Issue 3, Pages 433-441).

DOI: 10.1016/s0197-4580(01)00318-9

Google Scholar

[4] Brain R.F. Barajas, Jr, J.L. Rubenstein, J.S. Chang, J. Hwang, and S. Cha, Diffusion-Weighted MR Imaging Derived Apparent Diffusion Coefficient Is Predictive of Clinical Outcome in Primary Central Nervous System Lymphoma, AJNR Am J Neuroradiol 2010 31: 60-66originally published online on September 3, 2009, 10. 3174/ajnr. A1750.

DOI: 10.3174/ajnr.a1750

Google Scholar

[5] Koh, D. M., & Collins, D. J. (2007). Diffusion-weighted MRI in the body: applications and challenges in oncology. American Journal of Roentgenology, 188(6), 1622-1635.

DOI: 10.2214/ajr.06.1403

Google Scholar

[6] Kwee, T. C., Takahara, T., Ochiai, R., Nievelstein, R. A., & Luijten, P. R. (2008).

Google Scholar

[7] Chandarana, H., Lee, V. S., Hecht, E., Taouli, B., & Sigmund, E. E. (2011).

Google Scholar

[8] Taouli, Bachir, Ravi K. Thakur, Lorenzo Mannelli, James S. Babb, Sooah Kim, Elizabeth M. Hecht, Vivian S. Lee, and Gary M. Israel. Renal Lesions: Characterization with Diffusion-weighted Imaging versus Contrast-enhanced MR Imaging 1., Radiology 251, no. 2 (2009).

DOI: 10.1148/radiol.2512080880

Google Scholar

[9] Cova, M., Squillaci, E., Stacul, F., Manenti, G., Gava, S., Simonetti, G., & Pozzi-Mucelli, R. (2014). Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results.

DOI: 10.1259/bjr/26525081

Google Scholar

[10] Fukuda Y, Ohashi I, Hanafusa K, et al. Anisotropic diffusion in kidney: apparent diffusion coefficient measurement s for clinical use [ J] . J Magn Reson Imaging, 2000, 11( 2) : 156-160.

DOI: 10.1002/(sici)1522-2586(200002)11:2<156::aid-jmri12>3.0.co;2-8

Google Scholar

[11] Ries, M., Jones, R. A., Basseau, F., Moonen, C. T., & Grenier, N. (2001). Diffusion tensor MRI of the human kidney. Journal of Magnetic Resonance Imaging, 14(1), 42-49.

DOI: 10.1002/jmri.1149

Google Scholar

[12] Chow, L. C., Bammer, R., Moseley, M. E., & Sommer, F. G. (2003). Single breath‐hold diffusion‐weighted imaging of the abdomen. Journal of Magnetic Resonance Imaging, 18(3), 377-382.

DOI: 10.1002/jmri.10353

Google Scholar

[13] Jones RA, Grattan-Smith JD. Age dependence of the renal apparent diffusion coef –ficient in children [ J ] . Pediatr Radiol, 2003, 33 (12) : 850-854.

DOI: 10.1007/s00247-003-0982-x

Google Scholar

[14] Xu Y, Wang X, J iang X. Relationship between the renal apparentdiffusion coefficient and glomerular filtration rate: preliminary experience[ J ]. J Magn Reson Imaging, 2007, 26 (3) : 6782681.

DOI: 10.1002/jmri.20979

Google Scholar

[15] Thoeny HC, De Keyzer F, Oyen RH, et al. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchyma diseases: initial experience. Radiology. 2005, 235: 911.

DOI: 10.1148/radiol.2353040554

Google Scholar

[16] Toyoshima S, Noguchi K, Seto H, et al. Functional evaluation of hydronephrosis by diffusion-weighted MR imaging. Relationship between apparent diffusion coefficient and split glomerular filtration rate. Acta Radiol, 2000, 4 1: 642.

DOI: 10.1080/028418500127346063

Google Scholar