Modelling of the Current-Time Characteristics in Anodic Bonding

Article Preview

Abstract:

The state of knowledge of anodic bonding is reviewed, paying particular attention to the creation of intimate contact and to the microstructure of anodic bonds formed between silicon and Pyrex. Equivalent electrical circuit models of differing degrees of sophistication which have been proposed in the literature to predict the current-time characteristics observed experimentally for a range of conditions of applied voltage and temperature in anodic bonding are critically analysed. It is shown that relatively simple equivalent circuit models comprising capacitors and resistors can be used to account for the main features of the observed current-time characteristics, but that these require the assumption of large relative permittivities for the capacitative components in the models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1558-1567

Citation:

Online since:

October 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Schmidt: Proceedings of the IEEE Vol. 86 (1998), p.1575.

Google Scholar

[2] P. Lindner, V. Dragoi, S. Farrens, T. Glinsner and P. Hangweier: Solid State Technology Vol. 47(6) (2004), p.55.

Google Scholar

[3] A.T.J. van Helvoort, K.M. Knowles and J.A. Fernie: J. Electrochem. Soc. Vol. 150 (2003), p. G624.

Google Scholar

[4] A. Cozma, H. Jakobsen and R. Puers: J. Micromech. Microeng. Vol. 8 (1998), p.69.

Google Scholar

[5] T. Rogers, N. Aitken, K. Stribley and J. Boyd: Sensors and Actuators A Vol. 123-124 (2005), p.106.

Google Scholar

[6] G. Wallis and D.I. Pomerantz: J. Appl. Phys. Vol. 40 (1969), p.3946.

Google Scholar

[7] T.R. Anthony: J. Appl. Phys. Vol. 54 (1983), p.2419.

Google Scholar

[8] B.I. Bleaney and B. Bleaney: Electricity and Magnetism, 2nd edition (Clarendon Press, Oxford 1965).

Google Scholar

[9] G. Wallis: J. Am. Ceram. Soc. Vol. 53 (1970), p.563.

Google Scholar

[10] G. Wallis: Electrocomponent Science and Technology Vol. 2 (1975), p.45.

Google Scholar

[11] K.B. Albaugh: J. Electrochem. Soc. Vol. 138 (1991), p.3089.

Google Scholar

[12] A. Cozma and B. Puers: J. Micromech. Microeng. Vol. 5 (1995), p.98.

Google Scholar

[13] A.T.J. van Helvoort: Ph.D. thesis, University of Cambridge (2002).

Google Scholar

[14] U.K. Krieger and W.A. Lanford: J. Non-Crystalline Solids Vol. 102 (1988), p.50.

Google Scholar

[15] C.M. Lepienski, J.A. Giacometti, G.F. Leal Ferreira, F.L. Freire and C.A. Achete: J. Non-Crystalline Solids Vol. 159 (1993) p.204.

DOI: 10.1016/0022-3093(93)90224-l

Google Scholar

[16] T.G. Alley, S.R.J. Brueck and R.A. Myers: J. Non-Crystalline Solids Vol. 242 (1998), p.165.

Google Scholar

[17] A. von Hippel, E.P. Gross, J.G. Jeliatis and M. Geller: Phys. Rev. Vol. 91 (1953), p.568.

Google Scholar

[18] A.N. Rios, A.C. Gracias, I.A. Maia and J.R. Senna: Rev. Bras. Aplic. Vacuo Vol. 19 (2000), p.31.

Google Scholar

[19] W. -P. Shih, C. -Y. Hui and N.C. Tien: J. Appl. Phys. Vol. 95 (2004), p.2800.

Google Scholar

[20] Y. Kanda, K. Matsuda, C. Murayama and J. Sugaya: Sensors and Actuators A Vol. 21-23 (1990), p.939.

Google Scholar

[21] S. Sassen, W. Kupke and K. Bauer: Sensors and Actuators A Vol. 83 (2000), p.150.

Google Scholar

[22] A.T.J. van Helvoort, K.M. Knowles and J.A. Fernie: J. Electrochem. Soc. Vol. 150 (2003), p. G624.

Google Scholar

[23] M.P. Borom: J. Am. Ceram. Soc. Vol. 56 (1973), p.254.

Google Scholar

[24] R.G. Gossink: J. Am. Ceram. Soc. Vol. 61 (1978), p.539.

Google Scholar

[25] D. -J. Lee, Y. -H. Lee, J. Jang and B. -K. Ju: Sensors and Actuators A Vol. 89 (2001), p.43.

Google Scholar

[26] Xing Qingfeng, G. Sasaki and H. Fukunaga: J. Mat. Sci: Materials in Electronics Vol. 13 (2002), p.83.

Google Scholar

[27] Q.F. Xing, M. Yoshida and G. Sasaki: Scripta Mat. Vol. 47 (2002), p.577.

Google Scholar

[28] A.T.J. van Helvoort, K.M. Knowles and J.A. Fernie: J. Am. Ceram. Soc. Vol. 86 (2003), p.1773.

Google Scholar

[29] A.T.J. van Helvoort, K.M. Knowles, R. Holmestad and J.A. Fernie: Phil. Mag. Vol. 84 (2004), p.505.

Google Scholar

[30] C. Tudryn, S. Schweizer, R. Hopkins, L. Hobbs and A.J. Garrett-Reed: J. Electrochem. Soc. Vol. 152 (2005), p. E131.

Google Scholar

[31] K.M. Knowles and A.T.J. van Helvoort: International Materials Reviews, in the press.

Google Scholar

[32] J.H. Beaumont and P.W.M. Jacobs: J. Phys. Chem. Solids Vol. 28 (1967), p.657.

Google Scholar

[33] C. Kim and M. Tomozawa: J. Am. Ceram. Soc. Vol. 59 (1976), p.127.

Google Scholar

[34] H.J. Schütt and E. Gerdes: J. Non-Crystalline Solids Vol. 144 (1992), p.1.

Google Scholar

[35] S.P. Mitoff and R.J. Charles: J. Appl. Phys. Vol. 43 (1972), p.927.

Google Scholar

[36] J.R. Macdonald: J. Appl. Phys. Vol. 44 (1973), p.3455.

Google Scholar

[37] K.F. Riley, M.P. Hobson and S.J. Bence: Mathematical Methods for Physics and Engineering, p.969 (Cambridge University Press, Cambridge U.K. 1998).

Google Scholar

[38] J.W. Christian: Theory of Transformations in Metals and Alloys, Second edition, p.15 (Pergamon Press, Oxford, U.K. 1975).

Google Scholar

[39] P. Nitzsche, K. Lange, B. Schmidt, S. Grigull, U. Kreissig, B. Thomas and K. Herzog: J. Electrochem. Soc. Vol. 145 (1998), p.1755.

DOI: 10.1149/1.1838553

Google Scholar

[40] N. Birks and G. Meier: Introduction to High Temperature Oxidation of Metals, p.60 (Edward Arnold, London, U.K. 1983).

Google Scholar

[41] A.T.J. van Helvoort, K.M. Knowles and J.A. Fernie: J. Am. Ceram. Soc. Vol. 86 (2003), p.1773.

Google Scholar

[42] K. Schjølberg-Henriksen, E. Poppe, S. Moe, P. Storås, M.M.V. Taklo, D.T. Wang and H. Jakobsen: Microsyst. Technol. Vol. 12 (2006), p.441.

DOI: 10.1007/s00542-005-0040-8

Google Scholar

[43] N. Aitken, personal communication (2006).

Google Scholar