Soldering and Brazing Metals to Ceramics at Room Temperature Using a Novel Nanotechnology

Article Preview

Abstract:

This paper reviews a new, low-temperature process for soldering and brazing ceramics to metals that is based on the use of reactive multilayer foils as a local heat source. The reactive foils range in thickness from 40μm to 100μm and contain many nanoscale layers that alternate between materials with large heats of mixing, such as Al and Ni. By inserting a free-standing foil between two solder (or braze) layers and two components, heat generated by the reaction of the foil melts the solder (or braze) and consequently bonds the components. The use of reactive foils eliminates the need for a furnace, and dramatically reduces the heating of the components being bonded. Thus ceramics and metals can be joined over large areas without the damaging thermal stresses that are typically encountered when cooling in furnace soldering or brazing operations. This paper draws on earlier work to review the bonding process and its application to a variety of ceramic-metal systems. Predictions of thermal profiles during bonding and the resulting residual stresses are described and compared with results for conventional soldering or brazing processes. The microstructure, uniformity, and physical properties of the reactive foil bonds are reviewed as well, using several different ceramic-metal systems as examples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1578-1587

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Koguchi, T. Hino, Y. Kikuchi, T. Yada: Experimental Mechanics, Vol. 34 (1994), p.116.

Google Scholar

[2] G. Elssner, G. Petzow: ISIJ International, Vol. 30 (1990), p.1011.

Google Scholar

[3] J. Harding, Y. L. Li: Composites Science and Technology: Vol. 45 (1992), p.161.

Google Scholar

[4] S. H. Hamid, M. B. Amin, A. G. Maadhah: Handbook of Polymer Degradation (Marcel Dekker, New York 2000).

Google Scholar

[5] P. A. Kelly, D. A. Hills, D. Nowell:. Journal of Strain Analysis, Vol. 27 (1992), p.15.

Google Scholar

[6] N. D. Tinsley, J. Huddleston, M. R. Lacey: Materials and Manufacturing Processes, Vol. 13 (1998), p.491.

Google Scholar

[7] S.J. Spey: Ignition Properties of Multilayer Nanoscale Reactive Foils, and the Properties of Metal-Ceramic Joints Made with the Same (PhD Thesis, The Johns Hopkins University, Baltimore 2005).

Google Scholar

[8] A. Duckham, J.S. Subramanian, J. Newson, M. Brown, Y. Lin and Z. He: Proc. of Soc. Vacuum Coaters Meeting, Washington DC (2006).

Google Scholar

[9] D. M. Makowiecki and R.M. Bionta: US Patent 5, 381, 944, Jan 17, (1995).

Google Scholar

[10] T. P. Weihs: Self-propagating reactions in multilayer materials, chapter in Handbook of Thin Film Process Technology (IOP Publishing, Bristol and Philadelphia 1998).

Google Scholar

[11] T.W. Barbee and T.P. Weihs: U.S. Pat. 5, 538, 795, July 23, (1996).

Google Scholar

[12] T.W. Barbee, Jr. and T.P. Weihs: U.S. Pat. 5, 547, 715, August 20, (1996).

Google Scholar

[13] T. P. Weihs, A. Gavens, M.E. Reiss, D. van Heerden, A. Draffin, and D. Stanfield: TMS Meeting Proceedings, Orlando, FL (1997).

Google Scholar

[14] D. Van Heerden, A.J. Gavens, A.B. Mann, and T.P. Weihs: Mat. Res. Soc. Symp. Proceedings, Boston Vol. 481 (1997), p.533.

Google Scholar

[15] A.J. Gavens, D. Van Heerden, A.B. Mann, M.E. Reiss, and T.P. Weihs: J. Appl. Phys. Vol. 87 (2000), p.1255.

Google Scholar

[16] J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, O.M. Knio, M. Powers, M. Whitener, and T.P. Weihs: Appl. Phys. Lett. Vol. 83 (2003), p.3987.

DOI: 10.1063/1.1623943

Google Scholar

[17] J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, O.M. Knio, and T.P. Weihs: J. Appl. Phys. Vol. 95 (2004), p.248.

DOI: 10.1063/1.1629390

Google Scholar

[18] A. Duckham, E. Besnoin, S.J. Spey, J. Wang, M.E. Reiss, O.M. Knio, T.P. Weihs: J. Appl. Phys. Vol. 96 (2004), p.2336.

DOI: 10.1063/1.1769097

Google Scholar

[19] A. Duckham, M. Brown, E. Besnoin, D. Van Heerden, O.M. Knio and T.P. Weihs: Proc. of American Ceramic Soc., Meeting Cocoa Beach, FL (2004).

Google Scholar

[20] A.J. Swiston, E. Besnoin, A. Duckham, O.M. Knio, T.P. Weihs and T.C. Hufnagel: Acta Mat., vol. 53 (2005), p.3713.

DOI: 10.1016/j.actamat.2005.04.030

Google Scholar

[21] J.S. Subramanian, T. Rude, J. Newson, Z. He, E. Besnoin and T.P. Weihs: Proc. IMAPS Symposium Long Beach, CA (2004).

Google Scholar

[22] J.S. Subramanian, Z. He, J. Newson, T. Rude, T.P. Weihs: Proc. IMAPS ATW Palo Alto, CA (2004).

Google Scholar

[23] D. Van Heerden, T. Rude, J. Newson, O. Knio, T.P. Weihs and D.W. Gailus: Proc. SemiTherm Boston, MA (2004).

Google Scholar

[24] D. Van Heerden: Reactive NanoTechnologies Internal Report (2005).

Google Scholar

[25] A. Duckham and M. Brown: Reactive NanoTechnologies Internal Report (2005).

Google Scholar