High Temperature Plastic Flow and Ductility in Polycrystalline Oxide Ceramics: Doping Effect and Related Phenomena

Article Preview

Abstract:

High temperature creep and superplastic flow in high-purity oxide ceramics such as alumina and tetragonal zirconia polycrystals is very sensitive to a small amount of doping by various oxides. High-resolution transmission electron microscopy and an energy-dispersive X-ray spectroscopy analysis revealed that grain boundaries in high-purity oxide ceramics are free from amorphous phase, and that the doped cations tend to segregate along the grain boundaries. Since the high temperature plastic flow in oxide ceramics takes place mainly by grain boundary matter transport by atomic diffusion, the grain boundary nano-structure control must be a useful way to develop new high-performance functional ceramics in the near future.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1620-1625

Citation:

Online since:

October 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.H. Chokshi and T.G. Langdon: Mater. Sci. Tech. 7 (1991), 577.

Google Scholar

[2] J. Wang and R. Raj: Acta metal. mater. 39 (1991) 2909.

Google Scholar

[3] S. Lartigue, L. Priester, F. Dupau, P. Gruffel and C. Carry: Mater. Sci. Eng. A 164 (1993), 211.

Google Scholar

[4] H. Yoshida, K. Okada, Y. Ikuhara and T. Sakuma: Phil. Mag. Lett. 76 (1997), 9.

Google Scholar

[5] H. Yoshida, Y. Ikuhara and T. Sakuma: J. Mater. Res. 13 (1998), 2597.

Google Scholar

[6] J. Cho, C.M. Wang, H.M. Chan, J.M. Rickman and M.P. Harmer: Acta Mater. 47 (1999), 4197.

Google Scholar

[7] M. Jimenez-Melend, A. Dominguez-Rodoriguez and A. Bravo-Leon: J. Am. Ceram. Soc. 81 (1998), 2761.

Google Scholar

[8] J. Mimurada, M. Nakano, K. Sasaki, Y. Ikuhara and T. Sakuma: J. Am. Ceram. Soc. 84 (2001), 1817.

Google Scholar

[9] K. Nakatani, H. Nagayama, H. Yoshida, T. Yamamoto and T. Sakuma: Scripta Mater. 49 (2003) 791.

Google Scholar

[10] Y. Sakka, T. Ishii, T.S. Suzuki, K. Morita and K. Hiraga: J. Euro. Ceram. Soc. 24 (2004), 449.

Google Scholar

[11] K. Nakatani, H. Nagayama, H. Yoshida, T. Yamamoto and T. Sakuma: Mater. Trans. 45 (2004), 2569.

Google Scholar

[12] H. Yoshida, Y. Ikuhara and T. Sakuma: Phil. Mag. Lett. 79 (1999), 249.

Google Scholar

[13] H. Yoshida, Y. Ikuhara and T. Sakuma: Acta Mater. 50 (2002), 2955.

Google Scholar

[14] T.G. Langdon and F.A. Mohamed: J. Mater. Sci. 13 (1978), 473.

Google Scholar

[15] R.M. Cannon, W.H. Rhodes and A.H. Heuer: J. Am. Ceram. Soc. 63 (1980), 46.

Google Scholar

[16] H. Yoshida, Y. Ikuhara, T. Sakuma. M. Sakurai and E. Matsubara: Phil. Mag. 84 (2004), 865.

Google Scholar

[17] H. Adachi, M. Tsukada and C. Satoko: J. Phys. Soc. Jap. 45 (1978), 875.

Google Scholar

[18] H. Yoshida, A. Kuwabara, T. Yamamoto, Y. Ikuhara and T. Sakuma: J. Mater. Sci. 40 (2005), 3129.

Google Scholar

[19] A. Kuwabara, M. Nakano, H. Yoshida, Y. Ikuhara and T. Sakuma: Acta Mater. 52 (2004), 5563.

Google Scholar

[20] H. Yoshida, S. Hashimoto and T. Yamamoto: Acta Mater. 53 (2005), 433.

Google Scholar

[21] W.D. Kingery, H.K. Bowen and D.R. Uhlman: Introduction to Ceramics (John Wiley and Sons, NY 1976).

Google Scholar