[1]
Merzhanov A.G., Borovinskaya I.P. Self-propagating high-temperature synthesis of inorganic compounds, Dokl. Akad. Nauk SSSR. 1972, vol. 204, 2, 366-369.
Google Scholar
[2]
Merzhanov A.G., Self-propagating high-temperature synthesis: Twenty years of search and finding, in Combustion and Plasma Synthesis of High-temperature materials, Eds. Munir Z.A., Holt J.B. at all, VCH Publ., 1990, 1-53.
Google Scholar
[3]
Information on http: /www. isman. ac. ru.
Google Scholar
[4]
Borovinskaya I.P., Chemical classes of SHS processes and materials, Pure Appl. Chem., 1992, vol. 64.
Google Scholar
[5]
Zhang L., Zhao Z.M., Liu W.Y., Lu H.X. High-Gravity Activated SHS of Large Bulk Al2O3/ZrO2 Nanocrystallline Composites, Int.J. of SHS, 18, 2009, 173-1280.
DOI: 10.3103/s1061386209030078
Google Scholar
[6]
Moya J.S., Iglesias J.E., Limpo F.J., Escrina J.A., Makhonin N.S., Rodriges M.A. Single crystal AlN fibres obtained by self-propagating high-temperature synthesis (SHS), Acta Mater., 45.
DOI: 10.1016/s1359-6454(97)00107-9
Google Scholar
[8]
1997, 3089-3094.
Google Scholar
[7]
Rawers J.C., Hansen J.S., Alman D.E., Hawk J.A. Formation of sheet metal-intermetallic composites by self-propagating high temperature synthesis, J. Mat. Sci. Let. 13, 1994, 1357-1360.
DOI: 10.1007/bf00624495
Google Scholar
[8]
Zheng Y., Han J., Du S. Reaction Synthesis of AlN-TiC ceramics and mechanism of densification, J. Inorg. Mater. (2000) 15.
Google Scholar
[4]
625-630 ] Zhang X., Xu Q., Han J., Kvanin V.L. Self-propagating high temperature synthesis of TiB/Ti composites, Mat. Sci. and Eng. A 348, 2003, 41-46.
DOI: 10.1016/s0921-5093(02)00635-4
Google Scholar
[10]
Gutmanas E.Y., Gotman I., Dense high-temperature ceramics by thermal explosion under pressure, J. Europ. Ceram. Soc, 19, 1999, 2381-2393.
DOI: 10.1016/s0955-2219(99)00104-1
Google Scholar
[11]
Song I., Wang L., Wixom T/J., Self-propagating high temperature synthesis and dynamic compaction of tytanium diboride/titanium carbide composites, J. Mat. Sci. 35, 2000, 2611-2617.
Google Scholar
[12]
Odawara O., Long Ceramic-lined pipes produced by a centrifugal-thermit process, J. Am. Ceram. Soc., 73.
DOI: 10.1111/j.1151-2916.1990.tb06563.x
Google Scholar
[3]
1990, 629-633.
Google Scholar
[13]
Zhang X., Liao L., Naiheng M., Wang H. New in-situ synthesis method of magnesium matrix composites reinforced with TiC particulates, Mat. Res., 9 (4), 2006, 1516-1526.
DOI: 10.1590/s1516-14392006000400003
Google Scholar
[14]
Lichieri R. Orru R., Locci. A.M., Caoi G. Combustion synthesis of TiC-metal composites and related plasma spraying deposition, Int. J. of Mat. and Prod. Tech., 20 (5, 6) 2004, 464-478.
DOI: 10.1504/ijmpt.2004.004791
Google Scholar
[15]
Licheri R., Orrù R., Musa C. and Giacomo Cao, Combination of SHS and SPS Techniques for fabrication of fully dense ZrB2-ZrC-SiC composites, Materials Letters, 2008, 432-435.
DOI: 10.1016/j.matlet.2007.05.066
Google Scholar
[16]
Oh J.H., Kirihara S., Miyamoto Y., Matsuura K., Kudoh M., Free form fabrication of intermetallics by reactive rapid prototyping, Int. J. of SHS, 12 (2) 2003, 129-136.
Google Scholar
[17]
Amosov A.P., Borovinskaya I.P., Merzhanov A.G., Sytschev A.E. Pronciples and methods for Regulation of Dyspersed Structure of SHS Powders: From Monocrystallites to Nanoparticles, Int. J. of SHS, 14 (3) 2005 , 165-185.
Google Scholar
[18]
Capel F., Contreras L, Rodriges M.A., Mechanical Behaviour of hard Ceramic Based Composites, Key Engineering MaterialsVols. 264-268, 2004, 1025-1028.
DOI: 10.4028/www.scientific.net/kem.264-268.1025
Google Scholar
[19]
Tsuchida T., Yamamoto S., Spark Plasma Sintering of ZrB2-ZrC Powder mixtures Synthesized by MA-SHS in Air, J. Mat. Sci. 42 (3), 2007, 772-778.
DOI: 10.1007/s10853-006-0719-y
Google Scholar
[20]
Talako T., Ilyuschenko A., Letsko A., SHS Powders for Thermal Spray Coatings, KONA Powders and Particle Journal, 27, 2009, 55-72.
DOI: 10.14356/kona.2009008
Google Scholar
[21]
Łopaciński M., Lis J., Ceramic Functionally Gradient Materials for armour applications, ECerS Proc. of the 10th Int. Conference of the European Ceramic Society : June 17–21, 2007, eds. J. G. Heinrich, C. G. Aneziris. — Baden-Baden : Göller Verlag GmbH, 2007, 1279–1284.
Google Scholar
[22]
Ermer E., Lis J. , Pampuch R., Investigation of Sialon Powders and Sintered Materials by FTIR Method, Proc. Fourth Euroceramics, C. Gallasi (ed. ), C.N.R. -IRTEC, Faenza Italy, Vol. 1, 1995, 61-66.
Google Scholar
[23]
Pampuch R. , Lis J., Sinterable SHS Powders. Illustrative Examples of State-of-the-Art, Adv. Sci. and Tech.; 45 (2006) 969-978.
Google Scholar
[24]
Lis J. Sinterable powders of covalent compounds prepared by SHS, Ceramics 44.
Google Scholar
[4]
1994, 1-74.
Google Scholar
[25]
Lyakhov N.Z., Vytyaz P.A., Grigoriyeva T.F., Talako T.F. at all Nanocomposites intermetallics/oxides produced by MA SHS, Rev. Adv. Materials Sci., 18, 2008, 326-328.
Google Scholar
[26]
Park N-R., Jeon S-H., Park J-S., Kim W., Shon I-J., Simultaneous synthesis and consolidation of nanostructured 4Fe-Al2O3 composite from mechanically activated powders by h-f activated sintering, J. Ceram Proc. Res., 10 (6), 2009, 774-779.
DOI: 10.1007/s12540-009-0931-9
Google Scholar
[27]
Pamuch R., Białoskórski J., Walasek E. Mechanism of reactions in the Sil + Cf system and the self-propagating high-temperature synthesis of silicon carbide Ceram Int. 13 (1) 1987 63-67.
DOI: 10.1016/0272-8842(87)90039-3
Google Scholar
[28]
L. Stobierski, E. Ermer, R. Pampuch and J. Lis, Supersaturated Solid Solutions of Boron in SiC by SHS Ceramics Int. 19 (1993) 231-234.
DOI: 10.1016/0272-8842(93)90054-u
Google Scholar
[29]
R. Pampuch, L. Stobierski, J. Lis Mictrostructure Development on Sintering of SHS-Derived and Conventional Silicon Carbide and Nitride Powders" Int. J. of SHS 2.
Google Scholar
[3]
(1993) 159-164.
Google Scholar
[30]
J. Lis, S. Majorowski, J.A. Puszynski, V. Hlavacek, Dense b and a/b-Sialon Materials by Pressureless Sintering of Combustion Synthesized Powders, Ceram. Bull., 70.
Google Scholar
[10]
(1991), 1658-1664.
Google Scholar
[31]
Kata D., Lis J., Pampuch R. Nitrogen Powders Prepared by Combustion Methods, Ceramics Ceramika 45, 1994, 28-35.
Google Scholar
[32]
Stobierski L., Lis J., Węgrzyn Z., M. Bućko M.M., SHS Synthesis of Nanocomposite AlN-SiC Powders, Int. J. of SHS, 10 (2001) 217-226.
Google Scholar
[33]
Zientara D, Bućko M.M.; Lis J.; Dense gamma-Alon Materiale from SHS Synthesized Powders; Adv. Sci. and Tech.; 45 (2006) 1052-1057.
Google Scholar
[34]
Pampuch R., Lis J., Stobierski L., M. Tymkiewicz M., Solid Combustion Synthesis of Ti3SiC2, J. Europ. Ceram. Soc. 5 (1989) 283-287.
DOI: 10.1016/0955-2219(89)90022-8
Google Scholar
[35]
Lis J., Miyamoto Y., Pampuch R., Tanihata K., Ti3SiC2 -based Materials Prepared by HIP-SHS Techniques, Materials Letters 22 (1995) 163-168.
DOI: 10.1016/0167-577x(94)00246-0
Google Scholar
[36]
Szwagierczak D., Marek A, Gadurska J., Kulawik J., Lis J. Use of Various Titanium Silicides to Thick Film Resistive Pastes" Proc. XXIIIIMAPS, Kołobrzeg 21-23 Sept. 1999, 149-154.
Google Scholar
[37]
M. Łopaciński M., Puszyński J., Lis J., Synthesis of Ternary Titanium Aluminum Carbides Using Self-Propagating High-Temperature Synthesis Technique, J. Amer. Ceram. Soc. 84.
DOI: 10.1111/j.1151-2916.2001.tb01138.x
Google Scholar
[12]
(2001) 3051-3053.
Google Scholar
[38]
Lis J., Kata D., Chlubny L., Łopaciński M., Zientara D., Processing of titanium-based layered ceramics using SHS technique, Ann. Chim. Sci. Mat. 2003, 28 (Suppl. 1), S115-S122.
Google Scholar
[39]
Chlubny L., Lis J., Bućko M.M.; SHS Synthesis of the Materials in the Ti-Al-C-N System Using Intermetalics; Adv. Sci. and Tech.; 45 (2006) 1047-1051.
Google Scholar
[40]
Kata D., Lis J., Pampuch R., Stobierski L., Ermer E., Preparation of Si3N4-SiC composite powders by combustion in the Si-C-N system, Arch. Combustionis 16, 1-2 (1996) 13-21.
Google Scholar
[41]
Kata D., Lis J., Pampuch R. and Stobierski L. Preparation of Fine Powders in the Si-C-N system using SHS, Int. J. of SHS, 7, 4, (1998) 475-485.
Google Scholar
[42]
Kata D., Lis J., Pampuch R., Combustion Synthesis of Multiphase Powders in the Si-C-N System, Solid State Ionic 101-103, (1997) 65-70.
DOI: 10.1016/s0167-2738(97)84010-6
Google Scholar
[43]
Kata D., Lis J., Ceramic Composites in the Si3N4-SiC System, Archives of Metallurgy, vol. 42, no. 2, (1997) 33-141.
Google Scholar
[44]
D. Zientara D, Bućko M.M., Lis J. Dense g-alon materials derived from SHS synthesized powders. Adv. Sci. Tech. 45 (2006) 1052-1057.
Google Scholar
[45]
Zientara D., Bućko .M. M, Lis J. Alon-based materials prepared by SHS technique. J. Eur. Ceram. Soc. 27 (2007) 775-779.
DOI: 10.1016/j.jeurceramsoc.2006.04.008
Google Scholar
[46]
Zientara D., Bućko M.M., Lis J. Investigation of g-alon structural evolution during sintering and hot-pressing. Key Eng. Mater. 409 (2009) 313-316.
DOI: 10.4028/www.scientific.net/kem.409.313
Google Scholar
[47]
Zientara D., Bućko M.M., Lis J. Dielectric properties of aluminium nitride – g-alon materials. J. Eur. Ceram. Soc. 27 (2007) 4051-4054.
DOI: 10.1016/j.jeurceramsoc.2007.02.093
Google Scholar
[48]
Zientara D, Bućko M.M., Lis J. Aluminium oxynitride as a crucible material for melting of nickel-based superalloys. in Proceedings of the 10th International Conference of the European Ceramic Society, edited J.G. Heinrich, C.G. Aneziris, Göller Verlag, Baden-Baden (2007).
Google Scholar
[49]
Chlubny L., Lis J., Bućko M.M. Preparation of Ti3 AlC2 and Ti2 AlC powders by SHS method, Materials Science & Technology 2009, October 25-29, 2009 : Pittsburgh, Pennsylvania. S., The Printing House, Inc., 2205—2213.
Google Scholar
[50]
Chlubny L., Lis J., Bućko M.M. Phase evolution and properties of Ti2 AlN based materials, obtained by SHS method" – Proc. of the 32nd International Conference on Advanced Ceramics and Composites, Wiley, 2008, pp.13-21.
Google Scholar
[51]
Lis J., Chlubny L., Zientara D., Bućko M.M. Phase evolution of materials in the Ti-Al-C system during hot pressing, Inżynieria Materiałowa 3-4 (156-157), (2007).
Google Scholar
[52]
Joint Commitee for Powder Diffraction Standards: International Center for Diffraction Data.
Google Scholar
[53]
Chung F.H.: Quantitative interpretation of X-ray diffraction patterns, I. Matrix-flushing method of quantitative multicomponent analysis. - J. Appl. Cryst., 7, (1974a), 513 – 519.
DOI: 10.1107/s0021889874010375
Google Scholar
[54]
Chlubny L.: New materials in Ti-Al-C-N system. - PhD Thesis. AGH-University of Science and Technology, Kraków 2006. (in Polish).
Google Scholar