Composites Produced by SHS Method – Current Development and Future Trends

Article Preview

Abstract:

Basic stages of progress in composite materials, prepared by SHS method, from a scientific approach to a promising and rapidly developing applications are discussed in this paper. The systematic review of different forms of composites prepared directly by SHS or by SHS-origin precursors is presented. Powders are usually the starting material for manufacturing of ceramic and a lot of attention has been paid to find new routes for synthesis powders in form of nano or micro particles. The present work is aimed at efficient and convenient powder processing by SHS as an important target for future composites technology. The use of SHS may bring a considerable development in ceramic technology, by enabling a manufacturing of sinterable, high-purity nano or micro powders. It can be demonstrated in different ceramic systems explored by the authors and coworkers using SHS e.g. (a) Si-C-N, (b) Al-O-N as well as (c) Ti-Si-C-N. Rapid combustion conditions were successfully used to manufacturing composite powders and nanopowders suitable for preparing multiphase composite materials having controlled properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

263-272

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Merzhanov A.G., Borovinskaya I.P. Self-propagating high-temperature synthesis of inorganic compounds, Dokl. Akad. Nauk SSSR. 1972, vol. 204, 2, 366-369.

Google Scholar

[2] Merzhanov A.G., Self-propagating high-temperature synthesis: Twenty years of search and finding, in Combustion and Plasma Synthesis of High-temperature materials, Eds. Munir Z.A., Holt J.B. at all, VCH Publ., 1990, 1-53.

Google Scholar

[3] Information on http: /www. isman. ac. ru.

Google Scholar

[4] Borovinskaya I.P., Chemical classes of SHS processes and materials, Pure Appl. Chem., 1992, vol. 64.

Google Scholar

[7] 919-940.

Google Scholar

[5] Zhang L., Zhao Z.M., Liu W.Y., Lu H.X. High-Gravity Activated SHS of Large Bulk Al2O3/ZrO2 Nanocrystallline Composites, Int.J. of SHS, 18, 2009, 173-1280.

DOI: 10.3103/s1061386209030078

Google Scholar

[6] Moya J.S., Iglesias J.E., Limpo F.J., Escrina J.A., Makhonin N.S., Rodriges M.A. Single crystal AlN fibres obtained by self-propagating high-temperature synthesis (SHS), Acta Mater., 45.

DOI: 10.1016/s1359-6454(97)00107-9

Google Scholar

[8] 1997, 3089-3094.

Google Scholar

[7] Rawers J.C., Hansen J.S., Alman D.E., Hawk J.A. Formation of sheet metal-intermetallic composites by self-propagating high temperature synthesis, J. Mat. Sci. Let. 13, 1994, 1357-1360.

DOI: 10.1007/bf00624495

Google Scholar

[8] Zheng Y., Han J., Du S. Reaction Synthesis of AlN-TiC ceramics and mechanism of densification, J. Inorg. Mater. (2000) 15.

Google Scholar

[4] 625-630 ] Zhang X., Xu Q., Han J., Kvanin V.L. Self-propagating high temperature synthesis of TiB/Ti composites, Mat. Sci. and Eng. A 348, 2003, 41-46.

DOI: 10.1016/s0921-5093(02)00635-4

Google Scholar

[10] Gutmanas E.Y., Gotman I., Dense high-temperature ceramics by thermal explosion under pressure, J. Europ. Ceram. Soc, 19, 1999, 2381-2393.

DOI: 10.1016/s0955-2219(99)00104-1

Google Scholar

[11] Song I., Wang L., Wixom T/J., Self-propagating high temperature synthesis and dynamic compaction of tytanium diboride/titanium carbide composites, J. Mat. Sci. 35, 2000, 2611-2617.

Google Scholar

[12] Odawara O., Long Ceramic-lined pipes produced by a centrifugal-thermit process, J. Am. Ceram. Soc., 73.

DOI: 10.1111/j.1151-2916.1990.tb06563.x

Google Scholar

[3] 1990, 629-633.

Google Scholar

[13] Zhang X., Liao L., Naiheng M., Wang H. New in-situ synthesis method of magnesium matrix composites reinforced with TiC particulates, Mat. Res., 9 (4), 2006, 1516-1526.

DOI: 10.1590/s1516-14392006000400003

Google Scholar

[14] Lichieri R. Orru R., Locci. A.M., Caoi G. Combustion synthesis of TiC-metal composites and related plasma spraying deposition, Int. J. of Mat. and Prod. Tech., 20 (5, 6) 2004, 464-478.

DOI: 10.1504/ijmpt.2004.004791

Google Scholar

[15] Licheri R., Orrù R., Musa C. and Giacomo Cao, Combination of SHS and SPS Techniques for fabrication of fully dense ZrB2-ZrC-SiC composites, Materials Letters, 2008, 432-435.

DOI: 10.1016/j.matlet.2007.05.066

Google Scholar

[16] Oh J.H., Kirihara S., Miyamoto Y., Matsuura K., Kudoh M., Free form fabrication of intermetallics by reactive rapid prototyping, Int. J. of SHS, 12 (2) 2003, 129-136.

Google Scholar

[17] Amosov A.P., Borovinskaya I.P., Merzhanov A.G., Sytschev A.E. Pronciples and methods for Regulation of Dyspersed Structure of SHS Powders: From Monocrystallites to Nanoparticles, Int. J. of SHS, 14 (3) 2005 , 165-185.

Google Scholar

[18] Capel F., Contreras L, Rodriges M.A., Mechanical Behaviour of hard Ceramic Based Composites, Key Engineering MaterialsVols. 264-268, 2004, 1025-1028.

DOI: 10.4028/www.scientific.net/kem.264-268.1025

Google Scholar

[19] Tsuchida T., Yamamoto S., Spark Plasma Sintering of ZrB2-ZrC Powder mixtures Synthesized by MA-SHS in Air, J. Mat. Sci. 42 (3), 2007, 772-778.

DOI: 10.1007/s10853-006-0719-y

Google Scholar

[20] Talako T., Ilyuschenko A., Letsko A., SHS Powders for Thermal Spray Coatings, KONA Powders and Particle Journal, 27, 2009, 55-72.

DOI: 10.14356/kona.2009008

Google Scholar

[21] Łopaciński M., Lis J., Ceramic Functionally Gradient Materials for armour applications, ECerS Proc. of the 10th Int. Conference of the European Ceramic Society : June 17–21, 2007, eds. J. G. Heinrich, C. G. Aneziris. — Baden-Baden : Göller Verlag GmbH, 2007, 1279–1284.

Google Scholar

[22] Ermer E., Lis J. , Pampuch R., Investigation of Sialon Powders and Sintered Materials by FTIR Method, Proc. Fourth Euroceramics, C. Gallasi (ed. ), C.N.R. -IRTEC, Faenza Italy, Vol. 1, 1995, 61-66.

Google Scholar

[23] Pampuch R. , Lis J., Sinterable SHS Powders. Illustrative Examples of State-of-the-Art, Adv. Sci. and Tech.; 45 (2006) 969-978.

Google Scholar

[24] Lis J. Sinterable powders of covalent compounds prepared by SHS, Ceramics 44.

Google Scholar

[4] 1994, 1-74.

Google Scholar

[25] Lyakhov N.Z., Vytyaz P.A., Grigoriyeva T.F., Talako T.F. at all Nanocomposites intermetallics/oxides produced by MA SHS, Rev. Adv. Materials Sci., 18, 2008, 326-328.

Google Scholar

[26] Park N-R., Jeon S-H., Park J-S., Kim W., Shon I-J., Simultaneous synthesis and consolidation of nanostructured 4Fe-Al2O3 composite from mechanically activated powders by h-f activated sintering, J. Ceram Proc. Res., 10 (6), 2009, 774-779.

DOI: 10.1007/s12540-009-0931-9

Google Scholar

[27] Pamuch R., Białoskórski J., Walasek E. Mechanism of reactions in the Sil + Cf system and the self-propagating high-temperature synthesis of silicon carbide Ceram Int. 13 (1) 1987 63-67.

DOI: 10.1016/0272-8842(87)90039-3

Google Scholar

[28] L. Stobierski, E. Ermer, R. Pampuch and J. Lis, Supersaturated Solid Solutions of Boron in SiC by SHS Ceramics Int. 19 (1993) 231-234.

DOI: 10.1016/0272-8842(93)90054-u

Google Scholar

[29] R. Pampuch, L. Stobierski, J. Lis Mictrostructure Development on Sintering of SHS-Derived and Conventional Silicon Carbide and Nitride Powders" Int. J. of SHS 2.

Google Scholar

[3] (1993) 159-164.

Google Scholar

[30] J. Lis, S. Majorowski, J.A. Puszynski, V. Hlavacek, Dense b and a/b-Sialon Materials by Pressureless Sintering of Combustion Synthesized Powders, Ceram. Bull., 70.

Google Scholar

[10] (1991), 1658-1664.

Google Scholar

[31] Kata D., Lis J., Pampuch R. Nitrogen Powders Prepared by Combustion Methods, Ceramics Ceramika 45, 1994, 28-35.

Google Scholar

[32] Stobierski L., Lis J., Węgrzyn Z., M. Bućko M.M., SHS Synthesis of Nanocomposite AlN-SiC Powders, Int. J. of SHS, 10 (2001) 217-226.

Google Scholar

[33] Zientara D, Bućko M.M.; Lis J.; Dense gamma-Alon Materiale from SHS Synthesized Powders; Adv. Sci. and Tech.; 45 (2006) 1052-1057.

Google Scholar

[34] Pampuch R., Lis J., Stobierski L., M. Tymkiewicz M., Solid Combustion Synthesis of Ti3SiC2, J. Europ. Ceram. Soc. 5 (1989) 283-287.

DOI: 10.1016/0955-2219(89)90022-8

Google Scholar

[35] Lis J., Miyamoto Y., Pampuch R., Tanihata K., Ti3SiC2 -based Materials Prepared by HIP-SHS Techniques, Materials Letters 22 (1995) 163-168.

DOI: 10.1016/0167-577x(94)00246-0

Google Scholar

[36] Szwagierczak D., Marek A, Gadurska J., Kulawik J., Lis J. Use of Various Titanium Silicides to Thick Film Resistive Pastes" Proc. XXIIIIMAPS, Kołobrzeg 21-23 Sept. 1999, 149-154.

Google Scholar

[37] M. Łopaciński M., Puszyński J., Lis J., Synthesis of Ternary Titanium Aluminum Carbides Using Self-Propagating High-Temperature Synthesis Technique, J. Amer. Ceram. Soc. 84.

DOI: 10.1111/j.1151-2916.2001.tb01138.x

Google Scholar

[12] (2001) 3051-3053.

Google Scholar

[38] Lis J., Kata D., Chlubny L., Łopaciński M., Zientara D., Processing of titanium-based layered ceramics using SHS technique, Ann. Chim. Sci. Mat. 2003, 28 (Suppl. 1), S115-S122.

Google Scholar

[39] Chlubny L., Lis J., Bućko M.M.; SHS Synthesis of the Materials in the Ti-Al-C-N System Using Intermetalics; Adv. Sci. and Tech.; 45 (2006) 1047-1051.

Google Scholar

[40] Kata D., Lis J., Pampuch R., Stobierski L., Ermer E., Preparation of Si3N4-SiC composite powders by combustion in the Si-C-N system, Arch. Combustionis 16, 1-2 (1996) 13-21.

Google Scholar

[41] Kata D., Lis J., Pampuch R. and Stobierski L. Preparation of Fine Powders in the Si-C-N system using SHS, Int. J. of SHS, 7, 4, (1998) 475-485.

Google Scholar

[42] Kata D., Lis J., Pampuch R., Combustion Synthesis of Multiphase Powders in the Si-C-N System, Solid State Ionic 101-103, (1997) 65-70.

DOI: 10.1016/s0167-2738(97)84010-6

Google Scholar

[43] Kata D., Lis J., Ceramic Composites in the Si3N4-SiC System, Archives of Metallurgy, vol. 42, no. 2, (1997) 33-141.

Google Scholar

[44] D. Zientara D, Bućko M.M., Lis J. Dense g-alon materials derived from SHS synthesized powders. Adv. Sci. Tech. 45 (2006) 1052-1057.

Google Scholar

[45] Zientara D., Bućko .M. M, Lis J. Alon-based materials prepared by SHS technique. J. Eur. Ceram. Soc. 27 (2007) 775-779.

DOI: 10.1016/j.jeurceramsoc.2006.04.008

Google Scholar

[46] Zientara D., Bućko M.M., Lis J. Investigation of g-alon structural evolution during sintering and hot-pressing. Key Eng. Mater. 409 (2009) 313-316.

DOI: 10.4028/www.scientific.net/kem.409.313

Google Scholar

[47] Zientara D., Bućko M.M., Lis J. Dielectric properties of aluminium nitride – g-alon materials. J. Eur. Ceram. Soc. 27 (2007) 4051-4054.

DOI: 10.1016/j.jeurceramsoc.2007.02.093

Google Scholar

[48] Zientara D, Bućko M.M., Lis J. Aluminium oxynitride as a crucible material for melting of nickel-based superalloys. in Proceedings of the 10th International Conference of the European Ceramic Society, edited J.G. Heinrich, C.G. Aneziris, Göller Verlag, Baden-Baden (2007).

Google Scholar

[49] Chlubny L., Lis J., Bućko M.M. Preparation of Ti3 AlC2 and Ti2 AlC powders by SHS method,  Materials Science & Technology 2009, October 25-29, 2009 : Pittsburgh, Pennsylvania. S., The Printing House, Inc., 2205—2213.

Google Scholar

[50] Chlubny L., Lis J., Bućko M.M. Phase evolution and properties of Ti2 AlN based materials, obtained by SHS method" – Proc. of the 32nd International Conference on Advanced Ceramics and Composites, Wiley, 2008, pp.13-21.

Google Scholar

[51] Lis J., Chlubny L., Zientara D., Bućko M.M. Phase evolution of materials in the Ti-Al-C system during hot pressing, Inżynieria Materiałowa 3-4 (156-157), (2007).

Google Scholar

[52] Joint Commitee for Powder Diffraction Standards: International Center for Diffraction Data.

Google Scholar

[53] Chung F.H.: Quantitative interpretation of X-ray diffraction patterns, I. Matrix-flushing method of quantitative multicomponent analysis. - J. Appl. Cryst., 7, (1974a), 513 – 519.

DOI: 10.1107/s0021889874010375

Google Scholar

[54] Chlubny L.: New materials in Ti-Al-C-N system. - PhD Thesis. AGH-University of Science and Technology, Kraków 2006. (in Polish).

Google Scholar