Self-Propagating High-Temperature Synthesis of Iron- and Copper-Matrix Cermets

Article Preview

Abstract:

The presentation will report on the adoption of two different approaches based on selfpropagating high-temperature synthesis (SHS) to produce cermets. The first of these concerns the formation of the solid solution carbide, (Ti,V)C, of various compositions in an iron matrix by starting with elemental powders. It was observed that two types of carbide particles were generated within the matrix; a (Ti,V)C carbide of submicron size and a TiC-rich carbide of slightly higher size. Comparison of SHS Fe-TiC products showed that the addition of vanadium led to refinement of the carbide dispersions. The mechanism of formation of Fe-(Ti,V)C cermets will be discussed using chemical thermodynamic analysis. The second SHS approach involves the reaction between titanium and graphite by dropping compacted powders into a copper melts at 1250°C. The process yielded dispersions of TiC within the matrix as well as graphite flakes. The reaction mechanism will be discussed and the potential of SHS to yield dispersions within metal matrices will be assessed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-281

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.S. Terry and O.S. Chinyamakobvu: J. Mater. Lett. Vol. 10 (1991), p.628.

Google Scholar

[2] A. G Merzhanov and I.P. Borovinskaya: Combustion Processes Techn Vol. 10 (1975), p.195.

Google Scholar

[3] A. Saidi, A. Chrysanthou, J.V. Wood and J.L.F. Kellie: J. Mater. Sci. Vol. 29 (1994), 4993.

Google Scholar

[4] Y. Choi and S.W. Rhee: J. Mater. Res. Vol. 8 (1993) p.3202.

Google Scholar

[5] Q. Fan, H. Chai and Z. Jin: J. Mater. Sci. Vol. 32 (1997) p.4319.

Google Scholar

[6] Q. Fan, H. Chai and Z. Jin: J. Mater. Sci. Vol. 34 (1999) p.115.

Google Scholar

[7] G. V. Samsonov and I.M. Vinitskii, in IM. Handbook of Refractory Compounds New York: IFI/Plenum Data Company, 1980. pp.393-397.

Google Scholar

[8] A. Chrysanthou and G. Erbaccio: J. Mater. Sci. Vol. 30(1995), p.6339.

Google Scholar

[9] M. Besterci, J. Ivan, L. Kovac, T. Weissgaerber and C. Sauer: Mater. Lett., Vol. 38 (1999), p.270.

Google Scholar

[10] N. Zarrinfar, A.R. Kennedy and P.H. Shipway: Scri. Mater. Vol. 50 (2004), p.949.

Google Scholar

[11] Y. H. Liang, H. Y. Wang, Y.F. Yang, Y.Y. Wang and P.C. Jiang: J. Alloys and Compounds Vol. 452 (2008), p.298.

Google Scholar

[12] Q. Xu, X. Zhang, J. Han, X. He and V.L. Kvanin: Mater. Lett. Vol. 57 (2003), p.4439.

Google Scholar

[13] J.P. Tu, N.Y. Wang, Y.Z. Yang, W.X. Qi, F. Liu, X.B. Zhang, H.M. Lu and M.S. Liu: Mater. Lett. 52 (2002), p.448.

Google Scholar

[14] R.H. Palma, A.H. Seputveda, R.A. Espinoza and R.C. Montiglio: J. Mater. Process. Technol. Vol. 169 (2005), p.62.

Google Scholar

[15] C.R. Rambo, M. Travitzky, K. Zimmerman and P. Greil: Mater. Lett. Vol. 59 (2005), p.1028.

Google Scholar

[16] P. Yih and D.D.L. Chung: J. Mater. Sci. Vol. Vol. 32 (1997), p.1703.

Google Scholar

[17] X.H. Zhang, C. Yan and Z.Z. Yu: J. Mater. Sci. Vol. 39 (2004), p.4683.

Google Scholar

[18] T.B. Massalski, in Binary Alloy Phase Diagrams ASM, Metals Park, Ohio, 44073, USA.

Google Scholar

[19] 19. A.E.W. Jarfors : Mater. Sci. Technol. Vol. 12 (1996), p.990.

Google Scholar

[20] J.S. Moya, S.L. Esteban and C. Pecharroman: Progress Mater. Sci. Vol. 52 (2007) p.1017.

Google Scholar

[21] N. Froumin, N. Frage, M. Polak and M. P. Dariel: Acta Mater. Vol. 48 (2000), p.1435.

Google Scholar

[22] M. P. Morozova, M. K. Khripun and S.M. Ariya: J. Gen. Chem. USSR Vol. 32 (1962), p. (2050).

Google Scholar

[23] Y. Choi and S.W. Rhee: J. Mater. Sci. Vol. 28 (1993) p.6669.

Google Scholar

[24] P. A. Korzhavyi, L. V. Pourovskii, H. W. Hugosson, A. V. Ruban, and B. Johansson: Phys. Rev. Lett. Vol. 88 (2001), p.155051.

Google Scholar