Catalytic Properties of the SHS Products - Review

Article Preview

Abstract:

The Self-Propagating High-Temperature Synthesis (SHS) method has been used to produce a new class of active catalyst materials based on metals, metal oxides and spinels for various applications. The method is characterized by very fast processing times (of the order of minutes), relatively low preheating temperatures and very high reaction temperatures produced as a result of carefully designed exothermic reactions. A large range of materials have been produced and characterized by a variety of physico-chemical and mechanical tests. This review devoted to Catalytic properties of SHS products. A number of catalytically active materials all over the world have been identified which offer promise for applications ranging from oxidation of CO and hydrocarbons to reduction of NOx, methane dehydrogenation and other.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

287-296

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.G. Merzhanov: in Combustion and Plasma Synthesis of High Temperature Materials, edited by Z. A Munir. and J.B. Holt /VCH Publishers, NY(1990).

Google Scholar

[2] A.G. Merzhanov: Int. J. of Self-Propagating High-Temperature Synthesis Vol. 6 (1997), p.119.

Google Scholar

[3] G. Gladoun (Xanthopoulou): Self-propagating High-temperature Synthesis of Catalysts and Supports, ( Kazakh Institute of Scientific and Technical Information, Kazakhstan 1990).

Google Scholar

[4] G. Gladoun (Xanthopoulou), Self-Propagating High-Temperature Synthesis of Catalysts and Carriers, DSc Dissertation, Moscow (1991).

Google Scholar

[5] G. Gladoun(Xanthopoulou): Int. J. of Self-propagation High-temperature Synthesis Vol. 3(1994), p.51.

Google Scholar

[6] V. Sergienko and G. Gladoun, in : Proc. of 1st Int. Symposium on Self-Propagation High-temperature Synthesis, Moscow(1991), p.110.

Google Scholar

[1] 7. G. Gladoun(Xanthopoulou), V. Sergienko and G. Ksandopulo: Int. J. of Self-Propagating High-Temperature Synthesis, V. 6, (1997), p.399.

Google Scholar

[7] P. Dinka, A.S. Mukasyan: Journal of Power Sources 167 (2007) 472–481, USA.

Google Scholar

[8] A. S. Mukasyan and P. Dinka: International Journal of Self-Propagating High-Temperature Synthesis, Vol. 16, 1 (2007) p.23.

Google Scholar

[9] K.S. Martirosyan, D. Litvinov and D. Luss: Combustion of Heterogeneous Systems: Fundamentals and Applications for Materials Synthesis (2007), pp.67-101.

Google Scholar

[10] F.R. Passadora, S.C. Maestrellia, E.M.J.A. R.F. Palloneb, Espostoa, R. Tomasia: Materials Science Forum Vol. 498-499 (2005), p.648.

Google Scholar

[11] Keita Taniguchi, Takahiro Hirano, Tsuyoshi Tosho, Tomohiro Akiyama: Catal Lett, Vol. 130 (2009), 362.

Google Scholar

[12] V. N. Borshch, S. Ya. Zhuk, N. A. Vakin, K. L. Smirnov, I. P. Borovinskaya and A. G. Merzhanov: International Journal of Self-Propagating High-Temperature Synthesis, Vol. 18 (2009), p.38.

DOI: 10.3103/s1061386209010087

Google Scholar

[13] G. Xanthopoulou and G. Vekinis: Applied Catalysis B: Environmental, 19(1998), p.37.

Google Scholar

[14] P.M. Pimentel, M.F. Ginani, Antonio Eduardo Martinelli, D.M.A. Melo, A.M. Garrido Pedrosa, M.A.F. Melo: Material Science Forum, Vol. 498-499(2005), p.663.

Google Scholar

[15] U. F. Zav'yalova, V. F. Tret'yakov, T. N. Burdeinaya, V. V. Lunin, N. B. Shitova,N. D. Ryzhova, A. N. Shmakov, A. I. Nizovskii, and P. G. Tsyrul'nikov: Kinetics and Catalysis, Vol. 46, 5( 2005) p.752.

DOI: 10.1007/s10975-005-0132-6

Google Scholar

[16] U.F. Zav'yalova, P.S. Barbashova, A.S. Lermontov, N.B. Shitova, V.F. Tret'yakov, T.N. Burdeinaya, V.V. Lunin, V.A. Drozdov, S.A. Yashnik, Z.R. Ismagilov, P.G. Tsyrul'nikov: Kinetics and Catalysis, 2007, Vol. 48, 1(2007 ), p.162.

DOI: 10.1134/s0023158407010211

Google Scholar

[17] Parthasarathi Beraa, Sachin Malwadkarb, Arup Gayena, C.V.V. Satyanarayanab, B.S. Raob, and M.S. Hegdea: Catalysis Letters Vol. 96, (2004) p.3.

Google Scholar

[18] G. Xanthopoulou and G Vekinis, Deep methane oxidation on catalysts made by SHS, Applied Catalysis A: General, 199 (2000), p.227.

DOI: 10.1016/s0926-860x(99)00562-1

Google Scholar

[19] M. A. Fraga, , M. C. Greca, and , L. G. Appel: Utilization of Greenhouse Gases, Vol. 852, 26(2003), p.375.

Google Scholar

[20] M. A. Fraga, R. A. Pereira and M. C. Greca: Materials Science Forum Vol. 530-531 (2006), p.696.

Google Scholar

[21] A.G. Merzhanov, et al., RU Patent, no. 2000137, no. 1806125( 1991, ) A.G. Merzhanov, et al., SU Patent, no. 1685904, no 1766498 (1991).

Google Scholar

[22] G.G. Gladun, Zh.G. Orinbekova, G.G. Ksandopulo, E.H. Grigoryan, A.G. Merzhanov, I.P. Borovinskaya and M.D. Nersesyan, USSR Patent 1729028 (1991).

Google Scholar

[23] G. Xanthopoulou: Applied Catalysis A: General, Letters, 185(1999) p.185.

Google Scholar

[24] G Xanthopoulou, Chemical Engineering and Technology, 24, 10(2001) p.1025.

Google Scholar

[25] S. Rodivilov, S. Gostev and G. Gladoun (Xanthopoulou): Proc. of International Seminar Block Supports and Catalysts of Honey-Comb Structure, Sankt-Petersburg, Russia(1995) p.65.

Google Scholar

[26] K.S. Martirosyan, D. Litvinov and D. Luss Combustion of Heterogeneous Systems: Fundamentals and Application for Materials Synthesis (2007) p.67.

Google Scholar

[27] T. Hirano, T. Tosho, T. Watanabe and T. Akiyama: Journal of Alloys and Compounds, Vol. 470, 1-2( 2009), p.245.

Google Scholar

[28] K. Taniguchi, T. Hirano,T. Tosho, T. Akiyama: Catal Lett 130(2009) p.362.

Google Scholar

[29] L.A. Tavadyan, S.A. Maslov and E.A. Blumberg: Neftekhimia Vol. 18, 6(1978) p.667.

Google Scholar

[30] G.N. Khirnova, M.G. Bulygin and E.A. Blumberg: Neftekhimia Vol. 21, 2(1981), p.250.

Google Scholar

[31] E.A. Blumberg and Yu.D. Novikov: Review of Sci. and Tech, Kinetica i Kataliz (1984).

Google Scholar

[32] E. Chinarro, J. Jurado: Key Engineering Materials: Vol. 206-213 (2002) p.1227.

Google Scholar

[33] T.K. Oganesyan, G.S. Gukasyan and A.B. Nalbandyan: Armenian Chim Zh. Vol. 41, 1-2(1988) p.50.

Google Scholar

[34] B. Moreno, E. Chinarro, J.C. Pérez and J.R. Jurado: Applied Catalysis B: Environmental 76 (2007) p.368.

Google Scholar

[35] G. Xanthopoulou, Applied Catalysis A: General, 182(1999) p.285.

Google Scholar

[36] P. Dinka and A. Mukasyan : J. Phys. Chem. B: 109 (2005), p.21627.

Google Scholar

[37] P. Dinka, A.S. Mukasyan / Journal of Power Sources 167 (2007) p.472.

Google Scholar

[38] V.V. Lunin, E.H. Grigoryan, N.N. Kuznetsova, T.I. Mikhal`chinets, A.V. Symonyan, V.I. Yukhvid: Proceedings of SHS99 symposium (1999) ; A.G. Merzhanov, et al., RU Pat. No 2050192, (1995).

Google Scholar

[39] E.N. Grigoryan International Journal of Self-Propagating High-temperature Synthesis, v. 6, n. 3, (1997).

Google Scholar

[40] C. Agrafiotis , M. Roeb , A.G. Konstandopoulos , L. Nalbandian ,V.T. Zaspalis , C. Sattler , P. Stobbe , A.M. Steele: Solar Energy 79 (2005) p.409.

DOI: 10.1016/j.solener.2005.02.026

Google Scholar

[41] A. Kumar, A.S. Mukasyan and E.E. Wolf: Applied Catalysis A: General, Vol. 372, 2(2010) p.175.

Google Scholar