Investigating the Selective Behaviour of CuO in Gas Sensing Applications

Article Preview

Abstract:

This contribution revisits recent results regarding the selective detection of the trace gases hydrogen sulfide, nitrogen oxide, and nitrogen dioxide using cupric oxide (CuO). It demonstrates how the variation of the surface temperature may be used to learn about basic material parameters as well as control the surface reactions. In contrast to commonly employed modulation schemes that continuously vary the temperature we use a steady-state approach in order to extract information about gas matrices. Our results highlight the potential for incorporating laboratory results regarding surface processes in pattern recognition schemes to improve the performance of these algorithms. We propose to implement the findings into temperature modulation schemes in order to allow for adding highly gas specific elements to the algorithms deployed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-39

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Marco, A. Gutiérrez-Gálvez, Signal and data processing for machine olfaction and chemical sensing: a review. IEEE Sensors Journal, (2012) 12(11), 3189-3214.

DOI: 10.1109/jsen.2012.2192920

Google Scholar

[2] J. Fonollosa, E. Neftci, R. Huerta, S. Marco, Evaluation of calibration transfer strategies between Metal Oxide gas sensor arrays, Procedia Engineering 120 ( 2015 ) 261 - 264.

DOI: 10.1016/j.proeng.2015.08.601

Google Scholar

[3] P. Walden, J. Kneer, S. Knobelspies, W. Kronast, U. Mescheder, S. Palzer, Micromachined hotplate platform for the investigation of inkjet printed: functionalized metal oxide nanoparticles, J. Microelectromech. Syst., 24 (2015), pp.1384-139.

DOI: 10.1109/jmems.2015.2399696

Google Scholar

[4] J. Kneer, A. Eberhardt, P. Walden, A. Ortiz-Perez, J. Wöllenstein, S. Palzer, Apparatus to characterize gas sensor response under real-world conditions in the lab, Rev. Sci. Instrum., 85 (2014), p.055006.

DOI: 10.1063/1.4878717

Google Scholar

[5] B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bl¨asing, A. Krost, S. Shokovets, C. M¨uller, and C. Ronning, Binary copper oxide semiconductors: From materials towards devices Phys. Status Solidi B 249, 1487 (2012).

DOI: 10.1002/pssb.201248128

Google Scholar

[6] M. Heinemann, B. Eifert, and C. Heiliger Band structure and phase stability of the copper oxides Cu2O, CuO, and Cu4O3, PHYSICAL REVIEW B 87, 115111 (2013).

Google Scholar

[7] K. Henzler, A. Heilemann, J. Kneer, P. Guttmann, H. Jia, E. Bartsch, Y. Lu, S. Palzer, Investigation of reactions between trace gases and functional CuO nanospheres and octahedrons using NEXAFS-TXM imaging, Sci. Rep., 5 (2015), p.17729.

DOI: 10.1038/srep17729

Google Scholar

[8] N. Barsan, C. Simion, T. Heine, S. Pokhrel, U. Weimar, Modeling of sensing and transduction for p-type semiconducting metal oxide based gas sensors J Electroceram (2010) 25: 11-19.

DOI: 10.1007/s10832-009-9583-x

Google Scholar

[9] J. Tamaki, T. Maekawa, N. Miura, N. Yamazoe, CuO-SnO2 element for highly sensitive and selective detection of H2S, Sens. Actuators B: Chem., 8 (1992), pp.197-203.

DOI: 10.1016/0925-4005(92)80216-k

Google Scholar

[10] J. Kneer, J. Wöllenstein and S. Palzer, Specific, trace gas induced phase transition in copper(II)oxide for highly selective gas sensing, Appl. Phys. Lett. 105, 073509 (2014).

DOI: 10.1063/1.4893736

Google Scholar

[11] J. Kneer, S. Knobelspies, B. Bierer, J. Wöllenstein, S. Palzer, New method to selectively determine hydrogen sulfide concentrations using CuO layers, Sens. Actuators B: Chem, 222 (2016).

DOI: 10.1016/j.snb.2015.08.071

Google Scholar

[13] A. Das, B. Venkataramana, D. Partheephan, A.K. Prasad, S. Dhara, A.K. Tyag, Facile synthesis of nanostructured CuO for low temperature NO2 sensing, Physica E 54 (2013) 40-44.

DOI: 10.1016/j.physe.2013.06.007

Google Scholar

[14] K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Semiconducting metal oxides as sensors for environmentally hazardous gases, Sens. Actuators B: Chem. 160 (2011).

DOI: 10.1016/j.snb.2011.08.032

Google Scholar

[15] J. Kneer, J. Wöllenstein, S. Palzer, Manipulating the gas-surface interaction between copper(II) oxide and mono-nitrogen oxides using temperature, Sensors and Actuators B: Chemical, (2016) 57-62.

DOI: 10.1016/j.snb.2016.01.104

Google Scholar