Green Synthesis of Biopolymer-Silver Nanocomposites for Gas Sensing

Article Preview

Abstract:

In this research work, a very simple, low cost eco-friendly method is presented for the synthesis of silver nanoparticles to be used in colorimetric optical sensors based on localized SPR (LSPR) measurement for gas ammonia. Silver nitrate salts are reduced using gaur gum which acts as a capping and reducing agent. Commonly used reducing agents such as trisodium citrate or sodium borohydride are replaced by a more environmental friendly natural polysaccharide. Nanocomposite films of ~ 1.5 μm thicknesses were fabricated using Gaur Gum and silver nanoparticles. The uniformity of nanoparticles size was measured by SEM and TEM, while face centred cubic structure of crystalline silver nanoparticles was characterized using the X-ray diffraction technique. The optical properties of the composite film were tested by UV-VIS Spectroscopy. The formation of Gaur Gum/silver nanocomposite films was confirmed using SEM images. Also the resistivity of nanocomposite thin film was measured which could be then used for gas sensing application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-60

Citation:

Online since:

October 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Bocchinfuso, C. Mazzuca, C. Sandolo, S. Margheritelli, F. Alhaique, T. Coviello,A. Palleschi, J. Phys. Chem. B 114 (2010) 13059–13068.

DOI: 10.1021/jp105838t

Google Scholar

[2] A. Kumar, S. Aerry, A. Saxena, A. de, S. Mozumdar, Green Chem. 14 (2012)1298–1301.

Google Scholar

[3] Le AT, Huy PT, Dinh Tam P, Quang Huy T, Dac Cam P, Kudrinskiy A A, Krutyakov YA (2010). J Appl Phys. 10: 910-916.

DOI: 10.1016/j.cap.2009.10.021

Google Scholar

[4] Hebeish A, El-Shafei A, Sharaf S, Zaghloul S (2011), Carbohydr Polym. 84: 605-613.

Google Scholar

[5] Soukupov J, Kvytek L, Panacek A, Nevecna T, Zboril R (2008). Mater Chem Phys. 111: 77-81. ).

Google Scholar

[6] S. Sudrik, N. Chaki, V. Chavan, S. Chavan (2006) Chem. Eur. J., 859 p.12.

Google Scholar

[7] Y. Choi, N. Ho, C. Tung Angew. (2007), Chem. Int. Ed., 707, p.46.

Google Scholar

[8] K. Yoosaf, B. Ipe, C.H. Suresh, K.G. Thomas (2007) J. Phys. Chem. C, 1287 , p.111.

Google Scholar

[9] S. Yeo, H. Lee, S. Jeong J. Mater. Sci., 38 (2003), p.2143.

Google Scholar

[10] J. Zhang, P. Chen, C. Sun, X. Hu Appl. Catal. A, 266 (2004), p.49.

Google Scholar

[11] R. Chimentao, I. Kirm, F. Medina, X. Rodríguez, Y. Cesteros, P. Salagre, J. Sueiras (2004), Chem. Commun., 4 p.846.

DOI: 10.1039/b400762j

Google Scholar

[12] B. He, J. Tan, K. Liew, H. Liu (2004), J. Mol. Catal. A, 221, p.121.

Google Scholar

[13] Geethalakshmi R and Sarada D V L (2010) Int. J. Eng. Sci. and Tech. 2(5) 970.

Google Scholar

[14] Auddy R G, Abdullah m F, Das s, Roy p, Datta S, Mukherjee A (2013) BioMed research International, 1-9.

Google Scholar

[15] Biswal J, Ramnani S P, Shirolkar S, Sabhrawal S, (2009) Journal of Applied Polymer Science, 114, 2348-2355.

Google Scholar

[16] Nanotechnology: Principles & Practices by Dr. S K Kulkarni, 3rd Edition, 2015, Springer International publication ISBN-978-3-319-09170-9.

Google Scholar

[17] Pandey S, Goswami G K, Nanda K K (2013), Carbohydrate Polymer, 94: 229-234.

Google Scholar

[18] Pandey S, Goswami G K, Nanda K K, (2013), Scientific Reports.

Google Scholar

[19] A P Gupta and D K Verma (2015), International Journal of Advanced research, Vol3, Issue 2, 224-229.

Google Scholar

[20] S Pandey, Gopal k Goswami and Karuna K Nanda (2013), Scientific Reports, 3 (2082).

Google Scholar

[21] Mansa R, Detellier C (2013), Nanocomposites Materials, 6: 5199-5216.

Google Scholar

[22] Ali Mirzaei, Kamal Janghorban, Anna Bonvita, Giovni Neri (2015), Nanomaterials, 5, 737-749.

Google Scholar

[23] Mohd. Abdul Majeed Khan, Sushil Kumar, Mohd. Saleh Alsalhi (2014), Nanoscale Research Letter, 6: 434.

Google Scholar

[24] Sadanand Pandey, Gopal K. Goswami, Karuna K. Nanda (2012), International Journal of Biological Macromolecules 51, p.583– 589.

Google Scholar

[25] Gupta N R, Prasad B, Chinnakonda G S, Badiger M V (2013).

Google Scholar

[26] Anek Pal Gupta, D K Verma, (2014), International Journal of Advances research, Vol. 2, Issue 1, 680-690.

Google Scholar

[27] J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, (2003), Langmuir 19 p.1357–1361.

DOI: 10.1021/la020835i

Google Scholar

[28] C.J. Kirubaharan, D. Kalpana, Y.S. Lee, A.R. Kim, D.J. Yoo, K.S. Nahm, G.G. Kumar, (2012), Industrial and Engineering Chemistry Research 51, p.7441– 7446.

DOI: 10.1021/ie3003232

Google Scholar

[29] Klug HP, Alexander LE: X-ray diffraction procedures for polycrystalline and amorphous materials New York: Wiley; 1954, 491.

Google Scholar

[30] H. Xu, H. Li, J. Xia, S. Yin, Z. Luo, L. Liu, L. Xu, (2011), ACS Applied Materials & Interfaces 3, p.22–29.

Google Scholar

[31] G. G. Rusu, M. Rusu, E. K. Polychroniadis, C. Lioutas, (2005), Journal of Optoelectronics and Advanced Materials, Vol. 7, No. 4, 1957–(1964).

Google Scholar

[32] Santiago Tepantlan, A.M. Perez Gonzalez and I. Valeriano Arreola, (2008), Rev. Mex. Fis., Vol. 54, No. 2, 112-117.

Google Scholar