Sensitivity and Selectivity of SnO2-Based Sensor for CO and H2 Detections: A Novel Method to Detect Simultaneously the CO and H2 Concentrations

Article Preview

Abstract:

SnO2-based sensor has many advantages such as low cost, small size, high reliability, and long operating life, but selectivity has been a major obstacle on the application for discriminating gas species in mixture of multi-reduction gases. To resolve the problem in this work, the pure SnO2 and NiO-, CuO- and Pt-modifying SnO2 as sensing materials were prepared by sol-gel method, the sensor cells were fabricated and characteristics of sensitivity and selectivity of the sensor cells to CO and H2 at 400°C were investigated. The results showed that the response of CO was improved obviously by doping 20mol%NiO or 5mol%CuO into the SnO2, while the response of H2 was changed no more, and the responses of CO and H2 both were enhanced dramatically by bearing 1mol%Pt into the SnO2. On the basis of empirical equation (R=1+kCn), two sensor cells with different selectivity were introduced to assemble a novel SnO2-based sensor, and proposed a potential method to detect the concentrations of CO and H2 in multi-component gases, in which the parameters of k and n for sensor cells were obtained and feasibility of the method was demonstrated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

40-47

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Shimizu, Y. Nakamura, M. Egashira, Effects of diffusivity of hydrogen and oxygen through pores of thick film SnO2 based sensors on their sensing properties, Sensors and Actuators B 13(1993) 128-131.

DOI: 10.1016/0925-4005(93)85342-8

Google Scholar

[2] Y. Shimizu, T. Maekawa, Y. Nakamura, M. Egashira, Effects of gas diffusivity and reactivity on sensing properties of thick film SnO2-based sensors, Sensors and Actuators B 46 (1998) 163-168.

DOI: 10.1016/s0925-4005(97)00247-5

Google Scholar

[3] M. Schweizer-Berberrich, J.G. Zheng, U. Weimar, W. Gopel, N. Barsan, E. Pentia, A. Tomescu, The effect of Pt and Pd surface doping on the response of nanocrystalline tin dioxide gas sensors to CO, Sensors and Actuators B 31 (1996) 71-75.

DOI: 10.1016/0925-4005(96)80018-9

Google Scholar

[4] T. Hyodo, K. Sasahara, Y. Shimizu, M. Egashira, Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2, Sensors and Actuators B 106 (2005) 580-590.

DOI: 10.1016/j.snb.2004.07.024

Google Scholar

[5] S. Strassler, Simple models for N-type metal oxide gas sensors, Sensors and Actuators 4 (1983) 456-472.

DOI: 10.1016/0250-6874(83)85058-6

Google Scholar

[6] Y. Shimizu, N. Kuwano, T. Hyodo, M. Egashira, High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd, Sensors and Actuators B 83 (2002) 195-201.

DOI: 10.1016/s0925-4005(01)01040-1

Google Scholar

[7] P. Ménini, F. Parret, M. Guerrero, K. Soulantica, L. Erades, A. Maisonnat, B. Chaudret, CO response of a nanostructured SnO2 gas sensor doped with palladium and platinum. Sensors and Actuators B 103 (2004) 111-114.

DOI: 10.1016/j.snb.2004.04.103

Google Scholar

[8] B. Bahrami, A. Khodadadi, M. Kazemeini, Y. Mortazavi, Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane, Sensors and Actuators B 133 (2008) 352-356.

DOI: 10.1016/j.snb.2008.02.034

Google Scholar

[9] N.L. Hung, H. Kim, S. Hong, D. Kim, Enhancement of CO gas sensing properties in ZnO thin films deposited on self-assembled Au nanodots, Sensors and Actuators B 151 (2010) 127-132.

DOI: 10.1016/j.snb.2010.09.036

Google Scholar

[10] B. Esfandyarpour, S. Mohajerzadeh, S. Famini, A. Khodadadi, E. Asl Soleimani, High sensitivity Pt-doped SnO2 gas sensors fabricated using sol–gel solution on micromachined (100) Si substrates, Sensors and Actuators B 100 (2004) 190-194.

DOI: 10.1016/j.snb.2003.12.051

Google Scholar

[11] G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Resistive CO gas sensors based on In2O3 and InSnOX nanopowders synthesized via starch-aided sol–gel process for automotive applications, Sensors and Actuators B 132 (2008).

DOI: 10.1016/j.snb.2008.01.030

Google Scholar

[12] A. Chen, X.D. Huang, Z.F. Tong, S.L. Bai, R.X. Luo, C.C. Liu, Preparation, Characterization and gas-sensing properties of SnO2-In2O3 nanocomposite oxides, Sensors and Actuators B 115 (2006) 316-321.

DOI: 10.1016/j.snb.2005.09.015

Google Scholar

[13] R.J. Wu, J.G. Wu, M.R. Yu, T.K. Tsai, C.T. Yeh, Promotive effect of CNT on Co3O4-SnO2 in a semiconductor-type CO sensor working at room temperature, Sensors and Actuators B 131 (2008) 306-312.

DOI: 10.1016/j.snb.2007.11.033

Google Scholar

[14] M. Yuasa, T. Masaki, T. Kida, K. Shimanoe, N. Yamazoe, Nano-sized PdO loaded SnO2 nanoparticles by reverse micelle method for highly sensitive CO gas sensor, Sensors and Actuators B 136 (2010) 99-104.

DOI: 10.1016/j.snb.2008.11.022

Google Scholar

[15] H. Yamaura, Y. Iwasaki, S. Hirao, H. Yahiro, CuO/SnO2-In2O3 sensor for monitoring CO concentration in a reducing atmosphere, Sensors and Actuators B 25 (2010) 350-353.

DOI: 10.1016/j.snb.2010.10.044

Google Scholar

[16] D. Kotsikau, M. Ivanovskaya, D. Orlik, M. Falasconi, Gas-sensitive properties of thin and thick film sensors based on Fe2O3-SnO2 nanocomposites, Sensors and Actuators B 101 (2010) 199-206.

DOI: 10.1016/j.snb.2004.02.051

Google Scholar

[17] M. Rumyantseva, V. Kovalenko, A. Gaskov, E. Makshina, V. Yuschenko, I. Ivanova, A. Ponzoni, G. Faglia, E. Comini, Nanocomposites SnO2/Fe2O3: Sensor and catalytic properties Sensors and Actuators B 118 (2006) 208-214.

DOI: 10.1016/j.snb.2006.04.024

Google Scholar

[18] S. Chakraborty, A. Sen, H.S. Maiti, Selective detection of methane and butane by temperature modulation in iron doped tin oxide sensors, Sensors and Actuators B 115 (2006) 610-613.

DOI: 10.1016/j.snb.2005.10.046

Google Scholar

[19] Ricardo H.R. Castro, P. Hidalgo, R. Muccillo, D. Gouvêa, Microstructure and structure of NiO-SnO2 and Fe2O3-SnO2, Applied Surface Science 214 (2003) 172-177.

DOI: 10.1016/s0169-4332(03)00274-5

Google Scholar

[20] O.K. Tan, W. Zhu, Q. Yan, L.B. Kong, Size effect and gas sensing characteristics of nanocrystalline xSnO2-(1−x)α-Fe2O3 ethanol sensors, Sensors and Actuators B 65 (2000) 361-365.

DOI: 10.1016/s0925-4005(99)00414-1

Google Scholar

[21] T.S. Zhang, P. Hing, L. Yang, J.C. Zhang, Selective detection of ethanol vapor and hydrogen using Cd-doped SnO2-based sensors. Sensors and Actuators B 60 (1999) 208-215.

DOI: 10.1016/s0925-4005(99)00272-5

Google Scholar

[22] G. Fang, Z. Liu, C. Liu, K.L. Yao, Room temperature H2S sensing properties and mechanism of CeO2-SnO2 sol–gel thin films, Sensors and Actuators B 66 (2000) 46-48.

DOI: 10.1016/s0925-4005(99)00467-0

Google Scholar

[23] A. Khodadadi, S.S. Mohajerzadeh, Y. Mortazavi, A.M. Miri, Cerium oxide/SnO2-based semiconductor gas sensors with improved sensitivity to CO, Sensors and Actuators B 80 (2001) 267-271.

DOI: 10.1016/s0925-4005(01)00915-7

Google Scholar

[24] H. Yamaura, T. Jinkawa, J. Tamaki, K. Moriya, N. Miura, N. Yamazoe, Indium oxide-based gas sensor for selective detection of CO, sensors and Actuators B 35-36 (1996) 325-332.

DOI: 10.1016/s0925-4005(97)80090-1

Google Scholar

[25] N. Miura, T. Raisen, G. Lu, N. Yamazoe, Highly selective CO sensor using stabilized zirconia and a couple of oxide electrodes, Sensors and Actuators B 47 (1998) 84-91.

DOI: 10.1016/s0925-4005(98)00053-7

Google Scholar

[26] S.M. Sedghi, Y. Mortazavi, A. Khodadadi, Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method, Sensors and Actuators B 145 (2010) 7-12.

DOI: 10.1016/j.snb.2009.11.002

Google Scholar

[27] C.W. Na, H. -S. Woo, I. -D. Kim, J. -H. Lee, Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor, Chem. Commun 47 (2011) 5148-5150.

DOI: 10.1039/c0cc05256f

Google Scholar

[28] J.R. Huang, G.Y. Li, Z.Y. Huang, X.J. Huang, J.H. Liu, Temperature modulation and artificial neural network evaluation for improving the CO selectivity of SnO2 gas sensor, Sensors and Actuators B 114 (2006) 1059-1063.

DOI: 10.1016/j.snb.2005.07.070

Google Scholar

[29] V.V. Kovalenko, A.A. Zhukova, M.N. Rumyantseva, A.M. Gaskov, V.V. Yushchenko, I.I. Ivanova, T. Pagnier, Surface chemistry of nanocrystalline SnO2: effect of thermal treatment and additives, Sensors and Actuators B 126 (2007) 52–55.

DOI: 10.1016/j.snb.2006.10.047

Google Scholar

[30] K. -W. Kim, P. -S. Cho, S. -J. Kim, J. -H. Lee, C. -Y. Kang, J. -S. Kim, S. -J. Yoon, The selective detection of C2H5OH using SnO2-ZnO thin film gas sensors prepared by combinatorial solution deposition, Sensors and Actuators B 123 (2007).

DOI: 10.1016/j.snb.2006.08.028

Google Scholar

[31] M. -H. Seo, M. Yuasa, T. Kida, J. -S. Huh, K. Shimanoe, N. Yamazoe, Gas sensing characteristics and porosity control of nanostructured films compared of TiO2 nanotubes, Sensors and Actuators B 137 (2009) 513–520.

DOI: 10.1016/j.snb.2009.01.057

Google Scholar

[32] A. Cabot, J. Arbiol, A. Cornet, J.R. Morante, F. Chen, M. Liu, Mesoporous catalytic filters for semiconductor gas sensors, Thin Solid Films 436 (2006) 64-69.

DOI: 10.1016/s0040-6090(03)00510-8

Google Scholar