Defect Engineering in Impurity-Free Disordered (Al)GaAs for Optoelectronic Devices Application

Article Preview

Abstract:

The defects created in GaAs and AlxGa1-xAs epitaxial layers by impurity-free disordering (IFD) were studied by deep level transient spectroscopy (DLTS) and capacitance-voltage (C-V)measurements. IFD introduces three electron traps S1 (EC – 0.23 eV), S2* (EC – 0.53 eV), and S4 (EC – 0.74 eV) in n-type GaAs. We propose that S1 is a defect that may involve As-clustering or a complex of arsenic interstitials, Asi, and the arsenic-antisite, AsGa. S2* is the superposition of two defects, which may be VGa-related, while S4 is identified as the defect EL2. The same set of defects is created in impurity-free disordered n-type AlxGa1-xAs, but with the defects either pinned relative to the conduction band or the Fermi level. In contrast to disordering in n-type GaAs, IFD of p-type GaAs results in the pronounced atomic relocation of impurities, including Zn and Cu, in the nearsurface region of the disordered layer. The redistribution of these fast diffusers poses serious constraints regarding the application of IFD to the band gap engineering of doped GaAs-based heterostructures for optoelectronic devices application. However, we will demonstrate that this impurity segregation effect can be minimized. The discussion takes a critical look at the technological viability of impurity-free disordering for the integration of GaAs-based optoelectronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 230-232)

Pages:

233-0

Citation:

Online since:

November 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.J. Coleman, R.M. Lambert, M.L. Osowski and A.M. Jones: IEEE J. Sel. Top. Quantum Electron. Vol 3 (1997), p.874, and references therein.

Google Scholar

[2] R.M. Cohen: Mater. Sci. Eng. R Vol 20 (1997), p.167.

Google Scholar

[3] A. Saher Helmy, J.S. Aitchison and J.H. Marsh: Appl. Phys. Lett. Vol 71 (1997), p.2998.

Google Scholar

[4] W.P. Gillin: Semiconductor Quantum Wells Intermixing - Optoelectronic Properties of Semiconductors and Superlattices, Vol 8, Ed. E. Herbert Li (Gordon and Breach, The Netherlands 2000), pp.53-84.

Google Scholar

[5] For a comprehensive review of disordering techniques see, Semiconductor Quantum Wells Intermixing - Optoelectronic Properties of Semiconductors and Superlattices, Vol 8, Ed. E. Herbert Li (Gordon and Breach, The Netherlands 2000).

Google Scholar

[6] J.H. Marsh: Semicond. Sci. Technol. Vol 8 (1993), p.1136.

Google Scholar

[7] A. Pépin, C. Vieu, M. Schneider, H. Launois and Y. Nissim: J. Vac. Sci. Technol. B Vol 15 (1997), p.142.

Google Scholar

[8] L. Fu, J. Wong-Leung, P.N.K. Deenapanray, H.H. Tan, C. Jagadish, Bin Gong, R.N. Lamb, R.M. Cohen, W. Reichert, L. V. Dao and M. Gal: J. Appl. Phys. Vol 92 (2002), p.3579.

DOI: 10.1063/1.1503857

Google Scholar

[9] H.G. Grimmeiss: Ann. Rev. Mater. Sci. Vol 7 (1977), p.341.

Google Scholar

[10] J.W. Corbett, J.P. Karins and T.Y. Tan, Nucl. Instrum. Methods Vol 182-183 (1981), p.457.

Google Scholar

[11] Y. Zohta and M.O. Watanabe: J. Appl. Phys. Vol 53 (1982), p.1890.

Google Scholar

[12] H. Lefevre and M. Schultz: Appl. Phys. Vol 12 (1977), p.45.

Google Scholar

[13] P.N.K. Deenapanray, V.A. Coleman and C. Jagadish: Electrochem. Solid-State Lett. Vol 6 (2003), p. G37.

Google Scholar

[14] A. Mitonneau, G.M. Martin and A. Mircea: Electron. Lett. Vol 13 (1977), p.666.

Google Scholar

[15] D. Stievenard, X. Boddaert and J.C. Bourgoin: Phys. Rev. B Vol 34 (1986), p.4048.

Google Scholar

[16] J. Lagowski, D.G. Lin, T. -P. Cehn, M. Skowronski and H.C. Gatos: Appl. Phys. Lett. Vol 47 (1985), p.929.

Google Scholar

[17] G. Hofmann, J. Madok, N.M. Naegel, G. Roos, N.M. Johnson and E.E. Haller: Appl. Phys. Lett. Vol 61 (1992), p.2914.

Google Scholar

[18] Z.G. Wang, H.P. Gislason and B. Monemar: J. Appl. Phys. Vol 58 (1985), p.230.

Google Scholar

[19] M. Luysberg, W. Jäger, K. Urban, M. Schänzer, N.A. Stolwijk and H. Mehrer: Mater. Sci. Engn. B Vol 13 (1992), p.137.

Google Scholar

[20] P.W. Hutchinson and R.K. Ball: J. Mater. Sci. Vol 17 (1982), p.406.

Google Scholar

[21] Y.C. Lu, T.S. Kalkur and C.A. Paz de Araujo: J. Electron. Mater. Vol 19 (1990), p.29.

Google Scholar

[22] R. Leon, P. Werner, K.M. Yu, M. Kaminska and E.R. Weber: Appl. Phys. A Vol 61 (1995), p.7.

Google Scholar

[23] S. Yu, T.Y. Tan and U. Gösele: J. Appl. Phys. Vol 69 (1991), p.3547.

Google Scholar

[24] G. Bösker, N.A. Stolwijk, H. -G. Hettwer, A. Rucki, W. Jäger and U. Södervall: Phys. Rev. B Vol 52 (1995), p.11927.

DOI: 10.1103/physrevb.52.11927

Google Scholar

[25] F.C. Frank and D. Turnbull: Phys. Rev. Vol 104 (1981), p.617.

Google Scholar

[26] G. Rajeswaran, K.B. Kahen and D.J. Lawrence: J. Appl. Phys. Vol 69 (1991), p.1359.

Google Scholar

[27] R. Krause-Rehberg, K. Petters and J. Gebauer: Physica B Vol 273-274 (1999), p.714.

Google Scholar

[28] M. Buda, J. Hay, H.H. Tan, L. Fu, C. Jagadish, P. Reece and M. Gal: J. Electrochem. Soc. Vol 150 (2003), p. G481.

DOI: 10.1149/1.1588304

Google Scholar

[29] D.G. Deppe and N. Holonyak, Jr.: J. Appl. Phys. Vol 64 (1988), p. R93.

Google Scholar

[30] P.N.K. Deenapanray, H.H. Tan, C. Jagadish and F. D. Auret: J. Appl. Phys. Vol 88 (2000), p.5255.

Google Scholar

[31] H.J. von Bardeleben, D. Stiévenard, D. Deresmes, A. Huber and J.C. Bourgoin: Phys. Rev. B Vol 34 (1986), p.7192.

DOI: 10.1103/physrevb.34.7192

Google Scholar

[32] A. Ito, A. Kitagawa, Y. Tokuda, A. Usami, H. Kano, H. Noge and T. Wada: Semicond. Sci. Technol. Vol 4 (1989), p.416.

Google Scholar

[33] P.N.K. Deenapanray, Bin Gong, R.N. Lamb, A. Martin, L. Fu, H.H. Tan and C. Jagadish: Appl. Phys. Lett. Vol 80 (2002), p.4351.

Google Scholar

[34] S. Makram-Ebeid, D. Gautard, P. Devillard and G.M. Martin: Appl. Phys. Lett. Vol 40 (1982), p. (1982).

DOI: 10.1063/1.93028

Google Scholar

[35] P.N.K. Deenapanray, W.E. Meyer, F. D. Auret, M. Krispin and C. Jagadish: Physica B Vol 340-342 (2003), p.315.

DOI: 10.1016/j.physb.2003.09.084

Google Scholar

[36] P.N.K. Deenapanray, M. Lay, D. Åberg, H.H. Tan, B.G. Svensson, F.D. Auret and C. Jagadish: Physica B Vol 308-310 (2001), p.776.

DOI: 10.1016/s0921-4526(01)00836-5

Google Scholar

[37] S. Doshi, P.N.K. Deenapanray, H.H. Tan and C. Jagadish: J. Vac. Sci. Technol. B Vol 21 (2003), p.198.

Google Scholar

[38] J.I. Landman, C.G. Morgan, J.T. Schick, P. Papoulias and A. Kumar: Phys. Rev. B Vol 55 (1997), p.15581.

Google Scholar

[39] M. Stellmacher, R. Bisaro, P. Galtier, J. Nagle, K. Khirouni and J.C. Bourgoin: Semicond. Sci. Technol. Vol 16 (2001), p.440.

DOI: 10.1088/0268-1242/16/6/304

Google Scholar

[40] G. Zollo and R.M. Nieminen: J. Phys.: Condens. Matter Vol 15 (2003), p.843.

Google Scholar

[41] M.H. Zhang, L.W. Guo, H.W. Li, W. Li, Q. Huang, C.L. Bao, J.M. Zhou, B.L. Liu, Z.Y. Xu, Y.H. Zhang and L.W. Lu: Phys. Rev. B Vol 63 (2001), p.115324.

Google Scholar

[42] T.E.M. Staab, R.M. Nieminen, M. Luysberg, J. Gebauer and Th. Frauenheim: Physica B Vol 340-342 (2003), p.293.

DOI: 10.1016/j.physb.2003.09.088

Google Scholar

[43] P.N.K. Deenapanray and F.D. Auret: unpublished.

Google Scholar

[44] M. Kuzuhara, T. Nozaki and T. Kamejima: J. Appl. Phys. Vol 66 (1989), p.5833.

Google Scholar

[45] P.N.K. Deenapanray, H.H. Tan, C. Jagadish and F. D. Auret: Appl. Phys. Lett. Vol 77 (2000), p.626.

Google Scholar

[46] J.A. Van Vechten: J. Phys.: Condens. Matter Vol 1 (1989), p.5171.

Google Scholar

[47] T. Laine, J. Mäkinen, K. Saarinen, P. Hautojärvi, C. Corbel and P. Gibart: Mater. Sci. Forum Vol 196-201 (1995), p.1073.

DOI: 10.4028/www.scientific.net/msf.196-201.1073

Google Scholar