Anisotropy of Strain Relaxation in III-V Semiconductor Heterostructures

Article Preview

Abstract:

Partially relaxed III–V heterostructures: GaAs/InGaAs and InP/InAlAs/InGaAs, with a small lattice mismatch, grown using molecular beam epitaxy under compressive or tensile misfit stress at the (001) interface, have been investigated by means of high-resolution X-ray diffractometry, atomic force microscopy and generalized ellipsometry. Additionally, transmission electron microscopy and electron-beam induced current in a scanning electron microscope have been employed to reveal misfit dislocations at the heterostructure interface. Chemical etching was used to determine polarity of the crystals and threading dislocation densities in the epitaxial layers. Our findings are interpreted in terms of the dependent on growth conditions, material’s composition and doping glide velocities of two types of misfit dislocations: α and β, differing in their core structure and lying along two orthogonal 〈110〉 crystallographic directions at the (001) interface.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 230-232)

Pages:

93-100

Citation:

Online since:

November 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.S. Goldman, K.L. Kavanagh, H.H. Wieder, S.N. Ehrlich and R.M. Feenstra: J. Appl. Phys. Vol. 83 (1998), p.5137.

Google Scholar

[2] X.W. Liu, A.A. Hopgood, B.F. Usher, H. Wang and N.S. Braithwaite: Semicond. Sci. Technol. Vol. 14 (1999), p.1154.

Google Scholar

[3] A.M. Andrew, J.S. Speck, A.E. Romanov, M. Bobech and W. Pompe: J. Appl. Phys. Vol. 91 (2002), p. (1933).

Google Scholar

[4] B. Pichaud, N. Burle, M. Putero-Vuaroqueaux and C. Curtil: J. Phys.: Condens. Matter Vol. 14 (2002), p.13255.

DOI: 10.1088/0953-8984/14/48/376

Google Scholar

[5] G. Salviati, C. Ferrari, L. Lazzarini, L. Nasi, A.V. Drigo, M. Berti, D. de Salvador, M. Natali and M. Mazzer: Appl. Surf. Sci. Vol. 188 (2002), p.36.

DOI: 10.1016/s0169-4332(01)00726-7

Google Scholar

[6] I. Yonenaga and K. Sumino: J. Cryst. Growth Vol. 126 (1993), p.19.

Google Scholar

[7] B.A. Fox and W.A. Jesser: J. Appl. Phys. Vol. 68 (1990), p.2739.

Google Scholar

[8] N.L. Dmitruk, O.I. Mayeva, O.B. Yastrubchak and G.V. Beketov: Acta Phys. Polon. A Vol. 94 (1998) p.285.

Google Scholar

[9] O. Yastrubchak, E. Łusakowska, A. Morawski, O. Demchuk and T. Wosiński: Phys. Stat. Sol. (c) Vol. 1 (2004), p.401.

DOI: 10.1002/pssc.200303954

Google Scholar

[10] J. W. Faust: Compound Semiconductors, Vol. 1 Preparation of III-V Compounds (Ed. R.K. Willardson and H.L. Goerling, Reinhold Publ. Corp. N.Y. 1962).

Google Scholar

[11] N. Chen: J. Cryst. Growth Vol. 129 (1993), p.777.

Google Scholar

[12] O. Yastrubchak, T. Wosiński, J.Z. Domagała, E. Łusakowska, T. Figielski, B. Pécz and A.L. Tóth: J. Phys.: Condens. Matter Vol. 16 (2004), p. S1.

Google Scholar

[13] O. Yastrubchak, J. Bak-Misiuk, E. Łusakowska, J. Kaniewski, J.Z. Domagała, T. Wosiński, A. Shalimov, K. Regiński and A. Kudła: Physica B Vol. 340 (2003), p.1082.

DOI: 10.1016/j.physb.2003.09.183

Google Scholar

[14] J. Domagala, J. Bak-Misiuk, J. Adamczewska, Z.R. Zytkiewicz, E. Dynowska, J. Trela, D. Dobosz, E. Janik and M. Leszczyński: Phys. Stat. Sol. (a) Vol. 171 (1999), p.289.

DOI: 10.1002/(sici)1521-396x(199901)171:1<289::aid-pssa289>3.0.co;2-2

Google Scholar

[15] J.W. Matthews and A.E. Blakeslee: J. Cryst. Growth Vol. 27 (1974), p.118.

Google Scholar

[16] O. Yastrubchak, T. Wosiński, E. Łusakowska, T. Figielski and A.L. Tóth: Microchim. Acta Vol. 145 (2004), p.267.

Google Scholar

[17] S.K. Sinha: Acta Phys. Polon. A Vol. 89 (1996), p.219.

Google Scholar

[18] F. Varnier, N. Mayani and G. Rasigni: J. Vac. Sci. Technol. A Vol. 7 (1989), p.1289.

Google Scholar