Defect and Diffusion Forum Vols. 237-240

Paper Title Page

1299
Abstract: The 3D Monte Carlo scheme is proposed for simulation of simultaneous self-consistent current redistribution, surface diffusion, drift and void migration and coalescence at the interface metal/dielectric. Results of simulation as well as simple phenomenological model demonstrate a possibility of trapping at and migration along the grainboundaries (GBs). Critical size of “detrapping” after coalescence has been estimated.
1306
Abstract: The phenomenological theory for describing high-temperature interaction between metal and diluted gaseous medium has been developed. The theory is based on the assumption of duplex contact layer existence in the vicinity of interface (with relative thickness 2 d), where chemical reactions and processes of gas component migration occur. The non-stationary conditions of mass transfer at the interface are described involving effective average parameters. These conditions allow considering a wide spectrum of boundary diffusion phenomena (in a short and prolonged time ranges), in order to describe the kinetics of accumulation of diffusing component close to the interface. The description of the kinetic of gaseous saturation of metal (nitriding and borating) in the diluted medium becomes a partial proof of the suggested models. In order to approach the diffusion phenomena, boundary conditions, which contain, besides the coordinate derivative of concentration function, also the time derivative, were suggested. The derived equations describe the time dependence of change of surface concentration of gaseous component, the kinetics of its accumulation owing to chemical reaction, the specimen mass change owing to both, the diffusive addition dissolution in metal and its chemical interaction. The role of temperature is also discussed.
1312

Showing 191 to 193 of 193 Paper Titles