Effect of Morphology on the Mobility of Nanosized Liquid Pb Inclusions in Solid Al

Article Preview

Abstract:

Diffusion of nanosized liquid Pb inclusions attached to dislocations in thin aluminum foils was investigated in a wide temperature range using in-situ transmission electron microscopy. Trajectories of motion of the inclusions along the dislocations were used to determine their diffusion coefficients. The temperature and size dependences of diffusion coefficients of the inclusions were obtained. They indicate that (i) studied inclusions hold {111} facets on their surface in the studied temperature range; (ii) the mobility of the inclusions is controlled by step nucleation at the {111} facets.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-62

Citation:

Online since:

April 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ya.E. Geguzin, M.A. Krivoglaz: Migration of macroscopic inclusions in solids (Consultants Bureau, New York 1973).

DOI: 10.1007/978-1-4757-5842-9

Google Scholar

[2] G.A. Cottrell: Fusion Eng. Design, Vol. 66-68 (2003), p.253.

Google Scholar

[3] F.A. Nichols: J. Nucl. Mater. Vol. 30 (1969) p.143.

Google Scholar

[4] L.E. Wilertz, P.G. Shewmon: Metall. Trans. Vol. 1 (1970), p.2217.

Google Scholar

[5] M.E. Gulden: J. Nucl. Mater. Vol. 23 (1967), p.30.

Google Scholar

[6] E. Johnson, J.S. Andersen, M.T. Levinsen, et al.: Mater. Sci. Eng. A Vol. 375-377 (2004), p.951.

Google Scholar

[7] E. Johnson, M.T. Levinsen, S. Steenstrup, et al.: Phil. Mag. Vol. 84 (2004), p.2663.

Google Scholar

[8] S. Prokofjev, V. Zhilin, E. Johnson, et al.: Def. Diff. Forum Vol. 237-240 (2005), p.1072.

Google Scholar

[9] E. Johnson, S. Prokofjev, V. Zhilin, U. Dahmen: Z. Metallk. Vol. 96 (2005), p.1171.

Google Scholar

[10] E. Johnson, S. Steenstrup, M. Levinsen, et al.: J. Mater. Sci. Vol. 40 (2005), p.3115.

Google Scholar

[11] H. Gabrisch, L. Kjeldgaard, E. Johnson, U. Dahmen: Acta Mater. Vol. 49 (2001), p.4259.

Google Scholar

[12] E. Johnson, H.H. Andersen, U. Dahmen: Microsc. Res. Techn. Vol. 64 (2004), p.356.

Google Scholar

[13] M. Smoluchowski: Sitzungsber. Kais. Akad. Wissensch. Wien (IIa), B. 123 (1914), s. 2381.

Google Scholar

[14] M. Smoluchowski: Bull. Int. de l'Acad. de Cracovie, Serie A (1913), s. 418.

Google Scholar

[15] C.J. Smithells, E.A. Brandes (eds. ): Metal Reference Book (Butterworths, Boston 1976).

Google Scholar

[16] J.G. Kirkwood, F.P. Buff: J. Chem. Phys. Vol. 17 (1949), p.338.

Google Scholar

[17] Mullins W.W., Rohrer G.S.: J. Am. Ceram. Soc., 2000, Vol. 83(1). p.214.

Google Scholar

[18] P.J. Goodhew, D.A. Smith: Scr. Metall. Vol. 16 (1982), p.69.

Google Scholar

[19] P. v. Blanckenhagen: Structure and Dynamics of Surfaces II. Eds. W. Schommers, P. v. Blanckenhagen ( Springer-Verlag, Berlin a. o. 1987), p.73.

Google Scholar

[20] H.J.W. Zandvliet, O. Gurlu, B. Poelsema: Phys. Rev. B Vol. 64 (2001), 073402.

Google Scholar

[21] G. Gottstein, L.S. Shvindlerman: Interface Science Vol. 6. (1998), p.267.

Google Scholar