Dopant Diffusion during Amorphous Silicon Crystallization

Article Preview

Abstract:

We have investigated the redistribution of B during the crystallization of an amorphous Si layer homogeneously doped with P. The redistribution of B only occurs for concentrations lower than 2 × 1020 at cm−3. Crystallization leads to a non “Fickian” redistribution, allowing an abrupt interface between the regions doped and undoped with B. Once the crystallization is ended, B diffuses through the layer in the type B regime with a coefficient which is in agreement with the literature data for diffusion in polycrystalline Si. Although the P distribution is homogeneous in the entire layer, for a temperature as high as 755 °C, P diffuses towards the region the most concentrated in B. The B and P interactions are interpreted as chemical interactions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

April 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] International Technology Roadmap for Semiconductors, http: /public. itrs. net (2003).

Google Scholar

[2] J.M. Jacques, L.S. Robertson, K.S. Jones: Appl. Phys. Lett. Vol. 82 (2003), p.3469.

Google Scholar

[3] R. Duffy, V.C. Venezia, A. Heringa, T.W.T. Husken, M.J.P. Hopstaken, N.E. B Cowern, P.B. Griffin, C.C. Wang: Appl. Phys. Lett. Vol. 82 (2003), p.3647.

DOI: 10.1063/1.1578512

Google Scholar

[4] R. Duffy, V.C. Venezia, A. Heringa, B.J. Pawlak, M.J.P. Hopstaken, G.C. J Maas, Y. Tamminga, T. Dao, F. Roozeboom, L. Pelaz: Appl. Phys. Lett. Vol. 84 (2004), p.4283.

DOI: 10.1063/1.1751225

Google Scholar

[5] T.I. Kamins, J. Manoliu, R.N. Tucker and Tucker: J. Appl. Phys. Vol. 43 (1972), p.83.

Google Scholar

[6] K. Sakamoto, K. Nishi, T. Yamaji, T. Miyoshi and S. Ushio: J. Electrochem. Soc. Vol. 132 (1985), p.2457.

Google Scholar

[7] P. Pichler: Mat. Res. Soc. Symp. Proc. Vol. 717 (2002), p.103.

Google Scholar

[8] S. Solmi, E. Landi, F. Baruffaldi: J. Appl. Phys. Vol. 68 (1990), p.3250.

Google Scholar

[9] P.C. Zalm, C.J. Vriezema: Nucl. Instrum. Methods B Vol. 67 (1992), p.495.

Google Scholar

[10] C.E. Allen, D.L. Beke, H. Bracht, C.M. Bruff, M.B. Dutt, G. Erdélyi, P. Gas, F.M. d'Heurle, G.E. Murch, E.G. Seebauer, B.L. Sharma, N.A. Stolwijk: Diffusion in Semiconductors and NonMetallic Solids (Landolt-Börnstein Vol. III/33A, Springer-Verlag, Germany 1998).

Google Scholar

[11] J.C. Fisher: J. Appl. Phys. Vol. 22 (1951), p.74.

Google Scholar

[12] R.B. Fair: Concentration profiles of diffused dopants in silicon: Impurity Doping Processes in Silicon (edited by F. Wang, North Holland 1981), p.135.

DOI: 10.1016/b978-0-444-86095-8.50012-4

Google Scholar

[13] J.S. Christensen, H.H. Radamson, A. Yu. Kuznetsov and B.G. Svensson: Appl. Phys. Lett. Vol. 82 (2003), p.2254.

Google Scholar

[14] Binary Alloy Phase Diagrams (ASM International, 1996).

Google Scholar