Redistribution of Implanted Species in Polycrystalline Silicon Films on Silicon Substrate

Article Preview

Abstract:

Redistributions of implanted species after thermal annealing in polycrystalline silicon (poly-silicon) were studied by secondary ion mass spectrometry. Ten different elements were implanted into poly-silicon films grown on Si substrates. The implanted energies were chosen such that the expected ion range is within the poly-silicon film. Thermal anneals were carried out at temperatures between 300°C and 1000°C in flowing high purity Ar gas. Three different diffusion behaviors have been observed for these elements. For Be, Na, Ga, and Cr, most of the implanted ions diffused out to the surface of the poly-silicon film after anneal at 1000°C. For K, Ca, Ti, and Ge, the impurity ions diffused deeper into the bulk after anneal at 1000°C. For Cl and Mn ions, the concentration distributions became narrower when annealed at high temperatures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

April 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.K. Rath, Solar Energy Materials & Solar Cells, 76, (2003), p.431.

Google Scholar

[2] P. Woditsch and W. Koch, Solar Energy Materials & Solar Cells, 72 (2002), p.11.

Google Scholar

[3] H. Puchner and S. Selberherr, IEEE Trans. Electron Devices, 42(10), (1995), p.1750.

Google Scholar

[4] T.I. Kamins, J. Manoliu, and R.N. Tucker; J. Appl. Phys. 43, (1972), p.83.

Google Scholar

[5] J.C.M. Hwang, P.S. Ho, J.E. Lewis, and D.R. Campbell; J. Appl. Phys. 51, (1980), p.1576.

Google Scholar

[6] D. Demireva and B. Lammel, J. of Phys. D: Appl. Phys. 30, (1997), p. (1972).

Google Scholar

[7] H.H. Tseng, M. Orlowski, P.J. Tobin, and R.L. Hance, Electron Device Letters, 13(1), (1992), p.14.

Google Scholar

[8] T.P. Chen, T.F. Lei, C.Y. Chang, W.Y. Hsieh, and L.J. Chen, J. Electrochem. Soc. 142(6), (1995), p. (2000).

Google Scholar

[9] S.H. Park, and D.K. Schroder; J. Appl. Phys. 78, (1995), p.801.

Google Scholar

[10] S. Nakayama and T. Sakai, J. Appl. Phys. 79(8), (1996), p.4024.

Google Scholar

[11] M.J. Mitchell, P. Ashburn, and P.L.F. Hemment, J. Appl. Phys., 92, (2002), p.6924.

Google Scholar

[12] H. Francois-St-Cyr, E. Anoshikina, F. Stevie, L. Chow, K. Richardson, and D. Zhou, J. Vac. Sci. Technol. B, Vol. 19, (2001), p.1769.

Google Scholar

[13] H. Francois-Saint-Cyr, F. Stevie, J. M. McKinley, K. Elshot, L. Chow, and K. Richardson, J. Appl. Physics, 94, (2003), p.7433.

DOI: 10.1063/1.1624487

Google Scholar

[14] P. Zhang, F. Stevie, R. Vanfleet, R. Neelakantan, M. Klimov, D. Zhou, and L. Chow, J. Appl. Phys., 96, (2004) p.1053.

Google Scholar

[15] Barret, Nix, Tetelman, The principles of Engineering materials, (1973), p.125.

Google Scholar

[16] R. Madar, in Silicides: Fundamentals and Applications", Ed. L. Migilio and F. d, Heurle, Singapore, New Jersey, London, Hong Kong, World Scientific (2000), p.1.

Google Scholar

[17] W.H. Wang, W. Bolse, C. Illgner, K.P. Lieb, J. Keinonen, and J. C. Ewert, Thin Solid Films, 295, (1997), p.169.

DOI: 10.1016/s0040-6090(96)09287-5

Google Scholar

[18] R.N. Linnebach, J. Appl. Phys. 67(11), (1990), p.6794.

Google Scholar

[19] A.H. von Ommem, J. Appl. Phys. 57, (1985) p.1872.

Google Scholar

[20] A.H. von Ommem, J. Appl. Phys. 61, (1987) p.933.

Google Scholar

[21] W.E. Beadle, J.C.C. Tsai, and R.D. Plummer, Quick Reference Manual for Silicon Integrated Circuit Technology (Wiley, New York, 1985), pp.6-31.

Google Scholar

[22] V.P. Boldyrew, F.I. Prokovskii, S.G. Romanovskaro, A.V. Tkach, and I.E. Shimanovich, Sov. Phys. Semicond. 11, (1977), p.709.

Google Scholar