Defect and Diffusion Forum
Vols. 334-335
Vols. 334-335
Defect and Diffusion Forum
Vol. 333
Vol. 333
Defect and Diffusion Forum
Vol. 332
Vol. 332
Defect and Diffusion Forum
Vol. 331
Vol. 331
Defect and Diffusion Forum
Vol. 330
Vol. 330
Defect and Diffusion Forum
Vol. 329
Vol. 329
Defect and Diffusion Forum
Vols. 326-328
Vols. 326-328
Defect and Diffusion Forum
Vols. 323-325
Vols. 323-325
Defect and Diffusion Forum
Vol. 322
Vol. 322
Defect and Diffusion Forum
Vol. 321
Vol. 321
Defect and Diffusion Forum
Vols. 319-320
Vols. 319-320
Defect and Diffusion Forum
Vol. 318
Vol. 318
Defect and Diffusion Forum
Vols. 316-317
Vols. 316-317
Defect and Diffusion Forum Vols. 326-328
Paper Title Page
Abstract: Ti-6Al-4V is the most used of titanium alloy and presents some important properties as metallurgical stability, high specific strength, corrosion and creep resistance [. The aim of this study is to evaluate the creep behavior of Ti-6Al-4V alloy with equiaxed and bimodal microstructures and determine the creep parameters of Ti-6Al-4V in these conditions. It was used a Ti-6Al-4V alloy forged and annealed at 190°C for 6 hours and cooled in air. The material in this condition shows an equiaxed microstructure. For bimodal microstructure, the material was heat-treated at 950°C for 60 minutes and cooled in water until room temperature. After this the material was heat-treated at 600°C for 24 hours and cooled in air until room temperature. Creep tests were performed at 600°C in stress conditions of 125, 250 and 319 MPa at constant load. The alloy with Bimodal microstructure shows higher creep resistance with a longer life time in creep.
520
Abstract: Superalloys are used primarily in aerospace applications. These applications require a material with high mechanical strength, good resistance to fatigue and creep, good corrosion resistance and ability to operate continuously at elevated temperatures. These alloys were developed for elevated temperature service, where relatively severe mechanical stressing is encountered, and where high surface stability is frequently required. Inconel 718 has being investigated because it is one of the most widely used superalloys. Constant load creep tests were conducted on a standard creep machine at 600 and 700°C and stress levels of 300 MPa. Sets of curves and experimental parameters for the primary, secondary and tertiary regions, as a function of stress and temperature applied were obtained. The ductility, the creep rate and lifetime was evaluated.
525
Abstract: Effectiveness of internal combustion turbines in aero-engines is limited by comparatively low temperature of exhaust gas at the entry to turbine of the engine. A thermal efficiency and other capacities of turbine strongly depend on the ratio of the highest to the lowest temperature of a working medium. Continuous endeavour to increase the thermal resistance of engine elements requires, apart from laboratory investigations, also numerical studies in 3D of different aero-engine parts.
In the present work, the effectiveness of the protection of turbine blades by thermal barrier coating and internal cooling under thermal shock cooling was analysed numerically using the ABAQUS code. The phenomenon of heating the blade from temperature of combustion gases was studied. This investigation was preceded by the CFD analysis in the ANSYS Fluent program which allows for calculation of the temperature of combustion gases. The analysis was conducted for different levels of the shock temperature, different thickness of applied TBC, produced from different kinds of materials.
530
Abstract: The purpose of this work is to study hydrodynamic and thermal characteristics of air contended into a differentially heated cubic cavity. Due to their importance in the characterization of heat transfer in this kind of configuration, the effect of some parameters is analyzed. It consists in the Rayleigh number and the aspect ratio. In order to resolve the governing equations, the Lattice-Boltzmann method coupled with finite difference method is used.
536
Abstract: A comparative investigation of a series of numerical tests in the solution of heat transfer problems in the heated cylinder using radiation is presented. The numerical application, in steady state and cylindrical coordinates is studied through of Finite Volume and Finite Difference Methods. The numerical temperature profiles were compared with the analytical solution.
542
Abstract: Zn-Al-Cu alloys are characterized by a number of beneficial properties that include good castability, good tribological properties and low energy input for forming the product. When compared to bronze, Zn-Al-Cu alloys have a lower density.
Properties of Zn-Al-Cu can be improved by the partial or total replacement of copper with silicon and rare earth element additions. In the literature there are few studies on the effect of casting conditions and modifying the chemical composition through the introduction of alloy micro-additives on the alloy structure.
The aim of this study was to determine the effect of casting conditions and silicon and rare earth element additions on the structure of Zn-22% Al-2%Cu alloy. The subjects examined were the unmodified alloy, the alloy with 1.5% Si and the alloy with 1.5% Si and rare earth elements (mich metal). Samples were cast in sand and graphite molds. The liquidus temperature for each of these examined samples was determined.
Structure examinations were carried out in samples taken from the top, center and bottom of the ingot. In order to determine the microstructure of the examined structures metallographic examinations using an optical microscope and a scanning electron microscope with energy dispersive spectroscopy (EDS) capabilities, an X-ray microscope, was performed. Quantitive analysis on specific, characteristic microzones was performed based on the EDS X-ray spectroanalysis results.
547
Abstract: Zn-Al-Cu alloys are used as an alternative material for bronze, cast iron and aluminum alloys in bearings and as construction material. Advantageous results brings of their application for bearings exposed to high loads. One of the factors determining the possible applications of Zn-Al-Cu alloys is their resistance to electrochemical corrosion. In literature can be found information on the corrosion resistance of Zn-Al-Cu alloys. There have been no comprehensive studies on the influence of casting conditions and modifications of chemical composition on the structure and corrosion resistance. The purpose of the experiments was to determine the structure and corrosion resistance of cast Zn-40%Al-2%Cu alloy. The scope of the experiments included X-ray phase analysis, potentiodynamic and potentiostatic tests, surface condition examinations and alloy structure characterization both before and after corrosion. The Zn40Al2Cu alloy is characterized by a dendritic structure, consisting of solid solutions of Al, Zn-Al and Zn and the CuZn5 phase. A corrosive environment affects the structure of the subsurface zone of the Zn40Al2Cu alloy to a depth of 60 to 130 μm, where a decrease of zinc content and an increase of aluminum content are observed.
555
Abstract: The first results are presented of ESA MAXUS 8 sounding rocket benchmark experiment on γ-TiAl (Nb,B) intermetallics solidification, that was a part of the IMPRESS EU FP6 project. Having the aim to investigate the columnar and equiaxed primary microstructures formation at diffusion controlled melt growth, an experiment was designed applying the power-down directional solidification technique with fixing quench in automatic spaceborne furnace module TEM03-5M. Two related alloys were tested: one inoculated with boron grain refiner Ti-44Al-7.5Nb-2.7B (at.%); and the other Ti-45.5Al-8Nb (at.%) without grain refinement. The series of terrestrial reference processes has been performed accordingly in counter-gravity solidification direction. The numerical studies of heat-mass transfer, melt hydrodynamics and temporal solidification dynamics of these alloys have been implemented under the earth-and zero-gravity approximations using the GIGAN software package (IPPE). The comparison is performed of numerical model findings with the real microstructure and composition of samples, whose analyses were carried out by backscattered scanning electron microscopy (SEM) and X-ray microprobe (EDX) techniques. The convection-induced peritectic macrosegregation effect appearance and development in ground-based reference ingots is analytically observed and numerically studied. The achieved microstructure formation in space benchmarks is discussed.
561
Abstract: Liquid xenon (LXe) is a very attractive material as a detection medium for ionization detectors due to its high density, high atomic number, and low energy required to produce electron-ion pairs. Therefore it has been used in several applications, like γ detection or direct detection of dark matter. Now Subatech is working on the R & D of LXe Compton telescope for 3γ medical imaging, which can make precise tridimensional localization of a (β+, γ) radioisotope emitter. The diffusion of charge carriers will directly affect the spatial resolution of LXe ionization signal. We will report how we measure the transverse diffusion coefficient for different electric field (0.5 ~ 1.2 kV/cm) by observing the spray of charge carriers on drift length varying until 12 cm. With very-low-noise front-end electronics and complete Monte-Carlo simulation of the experiment, the values of transverse diffusion coefficient are measured precisely.
567
Abstract: In this paper, phase transformation in alloys of the Al-Fe and Al-Fe-Cr systems was investigated. The alloys were prepared by melting and gravity casting. The studies of phase transformation were carried out on samples after casting and annealing, using the differential thermal analysis (DTA) and dilatometric method. The knowledge on the phase transformations in these alloys including the information about order-disorder transition is very important from the point of view of obtained mechanical and physical properties of alloys of the Al-Fe system. These results are an important contribution in development of knowledge on iron aluminides. In the article, temperatures of phase transformations connected with a change in order type and transition into disordered solid solution were defined. Conformity of the recorded DTA results and dilatometric analysis was achieved.
573