Defect and Diffusion Forum Vols. 326-328

Paper Title Page

Abstract: The objective of this work is to present an exergy analysis of a novel absorption configuration using water-ammonia as working fluid. The proposed configuration operates at three pressure levels. The absorber is at an intermediate pressure (Pint). A thermodynamic model based on the mass energy and exergy balances is developed for this purpose. The parameters analyzed are the refrigeration systems performance (COP), the exergy efficiency, the global exergy destruction in the system, the exergy destruction and the irreversibility in different components. The effects of generator, absorber, condenser and evaporator on the performance of the system are examined. Numerical results highlight the great importance of the intermediate pressure on the performance of the system and specially on reducing the operating generator temperature. Consequently, the intermediate pressure is directly responsible on the adaptability of the proposed cooling absorption cycle to low enthalpy sources.
641
Abstract: Pure silica mesoporous molecular sieve (MMS) solid has been synthesized at 100°C by hydrothermal process. The effect of synthesis duration from 2 to 10 days has been investigated on the physicochemical properties of mesoporous molecular sieve. Samples were characterized by low angle XRD, N2 adsorption-desorption and HRTEM analysis. XRD patterns of the as-synthesized samples showed four well-defined diffraction peaks corresponding to 100, 110, 200 and 210 planes. These peaks are the fingerprint characteristics of MCM-41 mesoporous material. The high intensity diffraction peaks were observed in 8-days sample that define the high ordering of the pores and long range order. N2 adsorption-desorption results showed that all samples possessed a type IV isotherm having hysteresis loop of type H1 which is an identification of mesoporous material. Calcined samples exhibited high surface area i.e., 984-1036 m2 g-1, pore volume i.e., 1.00-1.13 cm3 g-1 and average pore diameter i.e., 3.04-3.30 nm. A hexagonal pore structure was found in the synthesized materials by HRTEM analysis, which confirms that the synthesized materials are MCM-41. HRTEM analysis showed the effect of synthesis duration on the materials and found that 8-days sample exhibited highly ordered hexagonal pore structure like honeycomb structure. All the samples were calcined at 550°C to remove the template and to study the changes in the mesoporous framework. The results showed that the mesoporous structure remained intact after calcination at 550°C, indicating that the mesoporous materials exhibit high thermal stability.
647
Abstract: Detection of hydrocarbon in sea bed logging (SBL) is still a very challenging task for deep target reservoirs. The response of electromagnetic (EM) field from marine environment is very low and it is very difficult to predict deep target reservoirs below 2500 m from the sea floor. Straight antennas at 0.125 Hz and 0.0625 Hz are used for the detection of deep target hydrocarbon reservoirs below the seafloor. The finite integration method (FIM) is applied on 3D geological seabed models. The proposed area of the seabed model (16 km ×16 km) was simulated by using CST (computer simulation technology) EM studio. The comparison of different frequencies for different target depths was done in our proposed model. Total electric and magnetic fields were applied instead of scattered electric and magnetic fields, due to its accurate and precise measurements of resistivity contrast at the target depth up to 3000 m. From the results, it was observed that straight antenna at 0.0625 Hz shows 50.11% resistivity contrast at target depth of 1000 m whereas straight antenna at 0.125 Hz showed 42.30% resistivity contrast at the same target depth for the E-field. It was found that the E-field response decreased as the target depth increased gradually by 500 m from 1000 m to 3000 m at different values of frequencies with constant current (1250 A). It was also investigated that at frequency of 0.0625 Hz, straight antenna gave 7.10% better delineation of hydrocarbon at 3000 m target depth. It was speculated that an antenna at 0.0625 Hz may be able to detect hydrocarbon reservoirs at 4000 m target depth below the seafloor. This EM antenna may open a new frontier for oil and gas industry for the detection of deep target hydrocarbon reservoirs below the seafloor.
654
Abstract: Moisture is one of the most deteriorating factors of buildings. The moisture content depends on hygroscopic equilibrium between buildings materials and environment, which is determined by the drying and wetting rate of masonry. So, the moisture content is not only determined by the water that is absorbed by the material, but also by the amount of water that is evaporated under favourable conditions, which is described by the drying process. In this work we analyse the drying kinetics of External Thermal Insulation Composite Systems (ETICS) using a first-order and a second-order drying kinetic models to describe mass transfer phenomenon. The results show that the second-order kinetic models described well the drying process studied. The application of kinetics models to the experimental results was explored and several parameters were retrieved. A proposal for the use of these parameters is presented and its practical use is discussed.
662
Abstract: Rising damp is the upward movement of ground water through a permeable masonry wall. The water rises through the pores in the masonry via a process called capillarity. Capillarity is a process whereby water molecules are electrochemically attracted to mineral surfaces, enabling water to move vertically through pores of a certain size despite the counteractive force of gravity. The great majority of the papers presented in literature only analyse the external shading effect on building energy conservation; and this work intends to present a preliminary analyse of the effect of shadows in rising damp phenomenon. We present an exhaustive numerical analyse of the shading effect on historical buildings. The shading effect due vertical nearby obstacles, as trees, or horizontal obstacles is causing mould and or rising damp phenomenon in historical buildings, as a result of moisture increasing. The results show the importance of obstacles (shading effect), as trees, nearby the old constructions in the rising damp, namely in the height of steady-state capillary rise and in the drying process.
668
Abstract: The structure of submicrocrystalline Mo, obtained by high pressure torsion, its thermal stability and the state of grain boundaries have been studied by transmission electron microscopy and emission Mössbauer spectroscopy.
674
Abstract: Luminescent sensors are chemical systems that can deliver information on the presence of selected analytes through the variations in their luminescence emission. With the advent of luminescent nanoparticles several new applications in the field of chemical sensing were explored. Among them, quantum dots (QD) represent inorganic semiconductor nanocrystals that are advantageous over conventional organic dyes from many different points of view. In this short review, the optical detection of various analytes using QD-based probes/sensors is presented and significant sensors characteristics are discussed. The biosensing approaches are not included in this article.
682
Abstract: In this paper, the performance of a channel element of a hygroscopic matrix is evaluated by detailed numerical modeling. The adopted physical model takes into account the gas-side and solid-side resistances to heat and mass transfer, as well as the simultaneous heat and mass transfer occurring simultaneously with the water adsorption/desorption process in the desiccant porous channel wall domain. The desiccant medium is silica gel RD, the equilibrium being characterized by sorption isotherms. Appropriate convective transfer coefficients are taken into account for the calculation of the heat and mass transfer phenomena between the airflow and the channel wall. The response of the channel element to a step change in the airflow states is simulated, the results enabling the investigation of some differences between the adsorption and desorption processes.
690
Abstract: The Ti-15Mo alloy is a promising material for use as a biomaterial because of its excellent corrosion resistance and its good combination of mechanical properties, such as fatigue, hardness, and wears resistance. This alloy has a body-centered predominantly cubic crystalline structure and the addition of interstitial atoms, such as oxygen and nitrogen, strongly alters its mechanical properties. Mechanical spectroscopy is a powerful tool to study the interaction of interstitial elements with the matrix metal or substitutional solutes, providing information such as the distribution and the concentration of interstitial elements. The objective of this paper is to study of the effects of heavy interstitial elements, such as oxygen and nitrogen, on the anelastic properties of the Ti-15Mo alloy by using mechanical spectroscopy measurements. In this study, the diffusion coefficients, pre-exponential factors, and activation energies were calculated for the oxygen in the Ti-15Mo alloy.
696
Abstract: Titanium alloys are favorable implant materials for orthopedic applications, due to their desirable properties such as good corrosion resistance, low elasticity modulus, and excellent biocompatibility. The research on titanium alloys is concentrated in the β type, as the Ti-20Mo alloys and the addition of interstitial elements in these metals cause changes in their mechanical properties. The mechanical spectroscopy measurements have been frequently used in order to verify the behavior of these interstitials atoms in metallic alloys. This paper presents the study of oxygen diffusion in Ti-20Mo alloys using mechanical spectroscopy measurements. A thermally activated relaxation structure was observed in the sample after oxygen doping. It was associated with the interstitial diffusion of oxygen atoms in a solid solution in the alloy. The diffusion coefficient for the oxygen diffusion in the alloy was obtained by the frequency dependence of the peak temperature and by using a simple mathematical treatment of the relaxation structure and the Arrhenius law.
702

Showing 111 to 120 of 125 Paper Titles