[1]
J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, T.C. Wiencek, Development of very-high-density low-enriched-uranium fuels, Nuclear Engineering and Design 178(1) (1997) 119-126.
DOI: 10.1016/s0029-5493(97)00217-3
Google Scholar
[2]
A. Glaser, Monolithic fuel and high-flux reactor conversion, Proceedings of the 26th RERTR Meeting, 2004, pp.7-12.
Google Scholar
[3]
D.E. Burkes, R. Prabhakaran, J.F. Jue, F.J. Rice, Mechanical properties of DU-xMo alloys with x = 7 to 12 weight percent, Metallurgical and Materials Transactions A 40(5) (2009) 1069-1079.
DOI: 10.1007/s11661-009-9805-5
Google Scholar
[4]
J.F. Jue, B.H. Park, C.R. Clark, G.A. Moore, D.D. Keiser Jr, Fabrication of monolithic RERTR fuels by hot isostatic pressing, Nuclear Technology 172(2) (2010) 204-210.
DOI: 10.13182/nt10-a10905
Google Scholar
[5]
M.K. Meyer, J. Gan, J.F. Jue, D.D. Keiser Jr, E. Perez, A. Robinson, D.M. Wachs, N. Woolstenhulme, G.L. Hofman, Y.S. Kim, Irradiation performance of U-Mo monolithic fuel, Nuclear Engineering and Technology 46(2) (2014) 169-182.
DOI: 10.5516/net.07.2014.706
Google Scholar
[6]
J.F. Jue, D.D. Keiser Jr, C.R. Breckenridge, G.A. Moore, M.K. Meyer, Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier, Journal of Nuclear Materials 448(1) (2014) 250-258.
DOI: 10.1016/j.jnucmat.2014.02.004
Google Scholar
[7]
D.D. Keiser Jr, S. Hayes, M.K. Meyer, C.R. Clark, High-density, low-enriched uranium fuel for nuclear research reactors, Journal of Materials 55(9) (2003) 55-58.
DOI: 10.1007/s11837-003-0031-0
Google Scholar
[8]
D. Brown, D. Alexander, K. Clarke, B. Clausen, M. Okuniewski, T. Sisneros, Elastic properties of rolled uranium–10wt. % molybdenum nuclear fuel foils, Scripta Materialia 69(9) (2013) 666-669.
DOI: 10.1016/j.scriptamat.2013.07.025
Google Scholar
[9]
M. Waldron, R. Burnett, S. Pugh, The mechanical properties of uranium-molybdenum alloys, United Kingdom Atomic Energy Authority. Research Group. Atomic Energy Research Establishment, Harwell, Berks, England, (1958).
Google Scholar
[10]
H. Ozaltun, M.H. Herman Shen, P. Medvedev, Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during hot isostatic pressing, Journal of Nuclear Materials 419(1–3) (2011) 76-84.
DOI: 10.1016/j.jnucmat.2011.08.029
Google Scholar
[11]
E. Perez, D.D. Keiser Jr, Y.H. Sohn, Microstructural development from interdiffusion and reaction between UMo and AA6061 alloys annealed at 600° and 550°C, Journal of Nuclear Materials 477 (2016) 178-192.
DOI: 10.1016/j.jnucmat.2016.05.019
Google Scholar
[12]
Y. Park, J. Yoo, K. Huang, D.D. Keiser Jr, J.F. Jue, B. Rabin, G. Moore, Y.H. Sohn, Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt. % Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier, Journal of Nuclear Materials 447(1–3) (2014).
DOI: 10.1016/j.jnucmat.2014.01.018
Google Scholar
[13]
K. Huang, D.D. Keiser Jr, Y.H. Sohn, Interdiffusion, intrinsic diffusion, atomic mobility, and vacancy wind effect in γ (bcc) uranium-molybdenum alloy, Metallurgical and Materials Transactions A 44(2) (2013) 738-746.
DOI: 10.1007/s11661-012-1425-9
Google Scholar
[14]
K. Huang, Y. Park, D.D. Keiser Jr, Y.H. Sohn, Interdiffusion between potential diffusion barrier Mo and U-Mo metallic fuel alloy for RERTR applications, Journal of Phase Equilibria and Diffusion 34(4) (2013) 307-312.
DOI: 10.1007/s11669-013-0236-z
Google Scholar
[15]
J.F. Jue, T.L. Trowbridge, C.R. Breckenridge, G.A. Moore, M.K. Meyer, D.D. Keiser Jr, Effects of heat treatment on U–Mo fuel foils with a zirconium diffusion barrier, Journal of Nuclear Materials 460 (2015) 153-159.
DOI: 10.1016/j.jnucmat.2015.02.017
Google Scholar
[16]
E.A. Nyberg, V.V. Joshi, D. Burkes, C.A. Lavender, The Microstructure of Rolled Plates from Cast Billets of U-10Mo Alloys, Pacific Northwest National Laboratory, Richland, WA (2015).
DOI: 10.2172/1177710
Google Scholar
[17]
V. Sinha, P. Hegde, G. Prasad, G. Dey, H. Kamath, Effect of molybdenum addition on metastability of cubic γ-uranium, Journal of Alloys and Compounds 491(1) (2010) 753-760.
DOI: 10.1016/j.jallcom.2009.11.060
Google Scholar
[18]
Y. Park, N. Eriksson, R. Newell, D.D. Keiser Jr, Y.H. Sohn, Phase decomposition of γ-U (bcc) in U-10 wt% Mo fuel alloy during hot isostatic pressing of monolithic fuel plate, Journal of Nuclear Materials 480 (2016) 271-280.
DOI: 10.1016/j.jnucmat.2016.08.022
Google Scholar
[19]
S. Neogy, M.T. Saify, S.K. Jha, D. Srivastava, M.M. Hussain, G.K. Dey, R.P. Singh, Microstructural study of gamma phase stability in U–9 wt. % Mo alloy, Journal of Nuclear Materials 422(1–3) (2012) 77-85.
DOI: 10.1016/j.jnucmat.2011.12.005
Google Scholar
[20]
A.J. Clarke, K.D. Clarke, R.J. McCabe, C.T. Necker, P.A. Papin, R.D. Field, A.M. Kelly, T.J. Tucker, R.T. Forsyth, P.O. Dickerson, J.C. Foley, H. Swenson, R.M. Aikin, D.E. Dombrowski, Microstructural evolution of a uranium-10 wt. % molybdenum alloy for nuclear reactor fuels, Journal of Nuclear Materials 465 (2015).
DOI: 10.1016/j.jnucmat.2015.07.004
Google Scholar
[21]
R. Newell, Y. Park, A. Mehta, D. Keiser Jr, Y. Sohn, Mechanical properties examined by nanoindentation for selected phases relevant to the development of monolithic uranium-molybdenum metallic fuels, Journal of Nuclear Materials (2017).
DOI: 10.1016/j.jnucmat.2017.02.018
Google Scholar
[22]
T. Pedrosa, A. Dos Santos, F. Lameiras, P. Cetlin, W. Ferraz, Phase transitions during artifical ageing of segregated as-cast U-Mo alloys, Journal of Nuclear Materials 457 (2015) 100-117.
DOI: 10.1016/j.jnucmat.2014.11.004
Google Scholar
[23]
A. Robinson, G. Chang, D. Keiser Jr, D. Wachs, D. Porter, Irradiation Performance of U-Mo Alloy Based Monolithic, Plate-Type Fuel–Design Selection, INL external report INL/EXT-09-16807 (2009).
DOI: 10.2172/968567
Google Scholar
[24]
M.I. Mirandou, S.N. Balart, M. Ortiz, M.S. Granovsky, Characterization of the reaction layer in U–7wt%Mo/Al diffusion couples, Journal of Nuclear Materials 323(1) (2003) 29-35.
DOI: 10.1016/j.jnucmat.2003.07.006
Google Scholar
[25]
H. Palancher, P. Martin, V. Nassif, R. Tucoulou, O. Proux, J. -L. Hazemann, O. Tougait, E. Lahera, F. Mazaudier, C. Valot, S. Dubois, Evidence for the presence of U-Mo-Al ternary compounds in the U-Mo/Al interaction layer grown by thermal annealing: a coupled micro X-ray diffraction and micro X-ray absorption spectroscopy study, Journal of Applied Crystallography 40(6) (2007).
DOI: 10.1107/s0021889807040010
Google Scholar
[26]
D.D. Keiser Jr, J.F. Jue, N.E. Woolstenhulme, A. Ewh, Potential annealing treatments for tailoring the starting microstructure of low-enriched U–Mo dispersion fuels to optimize performance during irradiation, Journal of Nuclear Materials 419(1–3) (2011).
DOI: 10.1016/j.jnucmat.2011.08.039
Google Scholar
[27]
F. Mazaudier, C. Proye, F. Hodaj, Further insight into mechanisms of solid-state interactions in UMo/Al system, Journal of nuclear materials 377(3) (2008) 476-485.
DOI: 10.1016/j.jnucmat.2008.04.016
Google Scholar
[28]
S. Van den Berghe, W. Van Renterghem, A. Leenaers, Transmission electron microscopy investigation of irradiated U–7 wt% Mo dispersion fuel, Journal of Nuclear Materials 375(3) (2008) 340-346.
DOI: 10.1016/j.jnucmat.2007.12.006
Google Scholar
[29]
E. Perez, D.D. Keiser Jr, Y.H. Sohn, Phase constituents and microstructure of interaction layer formed in U-Mo alloys vs Al diffusion couples annealed at 873 K (600°C), Metallurgical and Materials Transactions A 42(10) (2011) 3071-3083.
DOI: 10.1007/s11661-011-0733-9
Google Scholar
[30]
E. Perez, N. Hotaling, A. Ewh, D.D. Keiser Jr, Y.H. Sohn, Growth Kinetics of intermetallic phases in U-Mo vs. Al alloy diffusion couples annealed at 550°C, Defect and Diffusion Forum, Trans Tech Publ, 2007, pp.149-156.
DOI: 10.4028/www.scientific.net/ddf.266.149
Google Scholar
[31]
A. Leenaers, S. Van den Berghe, E. Koonen, P. Jacquet, C. Jarousse, B. Guigon, A. Ballagny, L. Sannen, Microstructure of U3Si2 fuel plates submitted to a high heat flux, Journal of Nuclear Materials 327(2–3) (2004) 121-129.
DOI: 10.1016/j.jnucmat.2004.01.025
Google Scholar
[32]
D.D. Keiser Jr, J. Gan, J.F. Jue, B.D. Miller, C.R. Clark, Electron microscopy characterization of an as-fabricated research reactor fuel plate comprised of U–7Mo particles dispersed in an Al–2Si alloy matrix, Materials Characterization 61(11) (2010).
DOI: 10.1016/j.matchar.2010.07.010
Google Scholar
[33]
J. Gan, D.D. Keiser Jr, D.M. Wachs, A.B. Robinson, B.D. Miller, T.R. Allen, Transmission electron microscopy characterization of irradiated U–7Mo/Al–2Si dispersion fuel, Journal of Nuclear Materials 396(2–3) (2010) 234-239.
DOI: 10.1016/j.jnucmat.2009.11.015
Google Scholar
[34]
E. Perez, Y.H. Sohn, D.D. Keiser Jr, Role of Si on the diffusional interactions between U-Mo and Al-Si alloys at 823 K (550°C), Metallurgical and Materials Transactions A 44(1) (2013) 584-595.
DOI: 10.1007/s11661-012-1368-1
Google Scholar
[35]
J.M. Park, H.J. Ryu, S.J. Oh, D.B. Lee, C.K. Kim, Y.S. Kim, G.L. Hofman, Effect of Si and Zr on the interdiffusion of U–Mo alloy and Al, Journal of Nuclear Materials 374(3) (2008) 422-430.
DOI: 10.1016/j.jnucmat.2007.09.059
Google Scholar
[36]
X. Zhang, Y.F. Cui, G.L. Xu, W.J. Zhu, H.S. Liu, B.Y. Yin, Z.P. Jin, Thermodynamic assessment of the U-Mo-Al system, Journal of Nuclear Materials 402(1) (2010) 15-24.
DOI: 10.1016/j.jnucmat.2010.04.018
Google Scholar
[37]
B.N. Briggs, W.H. Friske, Development of niobium diffusion barriers for aluminum-clad uranium alloy fuel elements, ; Atomics International. Div. of North American Aviation, Inc., Canoga Park, Calif., 1963, p. Medium: ED; Size: Pages: 50.
DOI: 10.2172/4710214
Google Scholar
[38]
J. Buddery, M. Clark, R. Pearce, J. Stobbs, The development and properties of an oxidation-resistant coating for uranium, Journal of Nuclear Materials 13(2) (1964) 169-181.
DOI: 10.1016/0022-3115(64)90038-8
Google Scholar
[39]
K. Huang, C.C. Kammerer, D.D. Keiser Jr, Y.H. Sohn, Diffusion barrier selection from refractory metals (Zr, Mo and Nb) via interdiffusion investigation for U-Mo RERTR fuel alloy, Journal of Phase Equilibria and Diffusion 35(2) (2013) 146-156.
DOI: 10.1007/s11669-013-0270-x
Google Scholar
[40]
G.A. Moore, M.C. Marshall, Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process, ; Idaho National Laboratory (INL), 2010, p. Medium: ED.
DOI: 10.2172/978364
Google Scholar
[41]
E. Perez, B. Yao, D.D. Keiser Jr, Y.H. Sohn, Microstructural analysis of as-processed U–10 wt. % Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier, Journal of Nuclear Materials 402(1) (2010) 8-14.
DOI: 10.1016/j.jnucmat.2010.04.016
Google Scholar
[42]
Y. Park, N. Eriksson, D.D. Keiser Jr, J.F. Jue, B. Rabin, G. Moore, Y.H. Sohn, Microstructural anomalies in hot-isostatic pressed U–10 wt. % Mo fuel plates with Zr diffusion barrier, Materials Characterization 103 (2015) 50-57.
DOI: 10.1016/j.matchar.2015.03.015
Google Scholar
[43]
K. Huang, Y. Park, D.D. Keiser Jr, Y.H. Sohn, Interdiffusion between Zr diffusion barrier and U-Mo alloy, Journal of Phase Equilibria and Diffusion 33(6) (2012) 443-449.
DOI: 10.1007/s11669-012-0106-0
Google Scholar
[44]
Y. Park, D.D. Keiser Jr, Y.H. Sohn, Interdiffusion and reactions between U–Mo and Zr at 650°C as a function of time, Journal of Nuclear Materials 456 (2015) 351-358.
DOI: 10.1016/j.jnucmat.2014.09.040
Google Scholar
[45]
R.I. Sheldon, D.E. Peterson, The U-Zr (Uranium-Zirconium) system, Bulletin of Alloy Phase Diagrams 10(2) (1989) 165-171.
DOI: 10.1007/bf02881432
Google Scholar
[46]
J. Dickson, L. Zhou, A. Paz y Puente, M. Fu, D.D. Keiser Jr, Y.H. Sohn, Interdiffusion and reaction between Zr and Al alloys from 425° to 625°C, Intermetallics 49 (2014) 154-162.
DOI: 10.1016/j.intermet.2013.12.012
Google Scholar
[47]
A. Mehta, L. Zhou, E. Schulz, D.D. Keiser Jr, J.I. Cole, Y. Sohn, Microstructural characterization of AA6061 vs. AA6061 HIP bonded cladding interface, Unpublished article.
DOI: 10.1007/s11669-018-0629-0
Google Scholar
[48]
J. Zhang, Z. Fan, Y. Wang, B. Zhou, Equilibrium pseudobinary Al–Mg2Si phase diagram, Materials Science and Technology 17(5) (2001) 494-496.
DOI: 10.1179/026708301101510311
Google Scholar