Relating Diffusion Couple Experiment Results to Observed As-Fabricated Microstructures in Low-Enriched U-10wt.% Mo Monolithic Fuel Plates

Article Preview

Abstract:

Monolithic fuel system with U – 10 wt.% Mo (U10Mo) fuel alloy has been developed for the Materials Management and Minimization reactor conversion program to replace highly-enriched fuels in research and test reactors with low-enriched fuels. Interdiffusion and phase transformations in the system constituents, i.e., U10Mo fuel, AA6061 cladding, and Zr diffusion barrier, have been investigated using fuel plates fabricated via rolling and hot-isostatic pressing. Diffusion couples, utilizing the constituents of the fuel system were also carried out to help understand the findings from fuel plates based on phase equilibria and diffusion kinetics. Findings from both fuel plates and diffusion couples can provide a comprehensive knowledge to assess, model, and predict the performance of monolithic low-enriched fuel system from fabrication to irradiation. This paper summarizes the experimental results reported from characterization of the fuel plates and diffusion couples with emphasis on interactions at the fuel-cladding, fuel-diffusion barrier, cladding-diffusion barrier, and cladding-cladding interfaces. Constituent phases and relevant diffusion kinetics are compared and contrasted, taking into account differences in thermodynamics and kinetics variables such as pressure, temperature, and cooling rate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-28

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, T.C. Wiencek, Development of very-high-density low-enriched-uranium fuels, Nuclear Engineering and Design 178(1) (1997) 119-126.

DOI: 10.1016/s0029-5493(97)00217-3

Google Scholar

[2] A. Glaser, Monolithic fuel and high-flux reactor conversion, Proceedings of the 26th RERTR Meeting, 2004, pp.7-12.

Google Scholar

[3] D.E. Burkes, R. Prabhakaran, J.F. Jue, F.J. Rice, Mechanical properties of DU-xMo alloys with x = 7 to 12 weight percent, Metallurgical and Materials Transactions A 40(5) (2009) 1069-1079.

DOI: 10.1007/s11661-009-9805-5

Google Scholar

[4] J.F. Jue, B.H. Park, C.R. Clark, G.A. Moore, D.D. Keiser Jr, Fabrication of monolithic RERTR fuels by hot isostatic pressing, Nuclear Technology 172(2) (2010) 204-210.

DOI: 10.13182/nt10-a10905

Google Scholar

[5] M.K. Meyer, J. Gan, J.F. Jue, D.D. Keiser Jr, E. Perez, A. Robinson, D.M. Wachs, N. Woolstenhulme, G.L. Hofman, Y.S. Kim, Irradiation performance of U-Mo monolithic fuel, Nuclear Engineering and Technology 46(2) (2014) 169-182.

DOI: 10.5516/net.07.2014.706

Google Scholar

[6] J.F. Jue, D.D. Keiser Jr, C.R. Breckenridge, G.A. Moore, M.K. Meyer, Microstructural characteristics of HIP-bonded monolithic nuclear fuels with a diffusion barrier, Journal of Nuclear Materials 448(1) (2014) 250-258.

DOI: 10.1016/j.jnucmat.2014.02.004

Google Scholar

[7] D.D. Keiser Jr, S. Hayes, M.K. Meyer, C.R. Clark, High-density, low-enriched uranium fuel for nuclear research reactors, Journal of Materials 55(9) (2003) 55-58.

DOI: 10.1007/s11837-003-0031-0

Google Scholar

[8] D. Brown, D. Alexander, K. Clarke, B. Clausen, M. Okuniewski, T. Sisneros, Elastic properties of rolled uranium–10wt. % molybdenum nuclear fuel foils, Scripta Materialia 69(9) (2013) 666-669.

DOI: 10.1016/j.scriptamat.2013.07.025

Google Scholar

[9] M. Waldron, R. Burnett, S. Pugh, The mechanical properties of uranium-molybdenum alloys, United Kingdom Atomic Energy Authority. Research Group. Atomic Energy Research Establishment, Harwell, Berks, England, (1958).

Google Scholar

[10] H. Ozaltun, M.H. Herman Shen, P. Medvedev, Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during hot isostatic pressing, Journal of Nuclear Materials 419(1–3) (2011) 76-84.

DOI: 10.1016/j.jnucmat.2011.08.029

Google Scholar

[11] E. Perez, D.D. Keiser Jr, Y.H. Sohn, Microstructural development from interdiffusion and reaction between UMo and AA6061 alloys annealed at 600° and 550°C, Journal of Nuclear Materials 477 (2016) 178-192.

DOI: 10.1016/j.jnucmat.2016.05.019

Google Scholar

[12] Y. Park, J. Yoo, K. Huang, D.D. Keiser Jr, J.F. Jue, B. Rabin, G. Moore, Y.H. Sohn, Growth kinetics and microstructural evolution during hot isostatic pressing of U-10 wt. % Mo monolithic fuel plate in AA6061 cladding with Zr diffusion barrier, Journal of Nuclear Materials 447(1–3) (2014).

DOI: 10.1016/j.jnucmat.2014.01.018

Google Scholar

[13] K. Huang, D.D. Keiser Jr, Y.H. Sohn, Interdiffusion, intrinsic diffusion, atomic mobility, and vacancy wind effect in γ (bcc) uranium-molybdenum alloy, Metallurgical and Materials Transactions A 44(2) (2013) 738-746.

DOI: 10.1007/s11661-012-1425-9

Google Scholar

[14] K. Huang, Y. Park, D.D. Keiser Jr, Y.H. Sohn, Interdiffusion between potential diffusion barrier Mo and U-Mo metallic fuel alloy for RERTR applications, Journal of Phase Equilibria and Diffusion 34(4) (2013) 307-312.

DOI: 10.1007/s11669-013-0236-z

Google Scholar

[15] J.F. Jue, T.L. Trowbridge, C.R. Breckenridge, G.A. Moore, M.K. Meyer, D.D. Keiser Jr, Effects of heat treatment on U–Mo fuel foils with a zirconium diffusion barrier, Journal of Nuclear Materials 460 (2015) 153-159.

DOI: 10.1016/j.jnucmat.2015.02.017

Google Scholar

[16] E.A. Nyberg, V.V. Joshi, D. Burkes, C.A. Lavender, The Microstructure of Rolled Plates from Cast Billets of U-10Mo Alloys, Pacific Northwest National Laboratory, Richland, WA (2015).

DOI: 10.2172/1177710

Google Scholar

[17] V. Sinha, P. Hegde, G. Prasad, G. Dey, H. Kamath, Effect of molybdenum addition on metastability of cubic γ-uranium, Journal of Alloys and Compounds 491(1) (2010) 753-760.

DOI: 10.1016/j.jallcom.2009.11.060

Google Scholar

[18] Y. Park, N. Eriksson, R. Newell, D.D. Keiser Jr, Y.H. Sohn, Phase decomposition of γ-U (bcc) in U-10 wt% Mo fuel alloy during hot isostatic pressing of monolithic fuel plate, Journal of Nuclear Materials 480 (2016) 271-280.

DOI: 10.1016/j.jnucmat.2016.08.022

Google Scholar

[19] S. Neogy, M.T. Saify, S.K. Jha, D. Srivastava, M.M. Hussain, G.K. Dey, R.P. Singh, Microstructural study of gamma phase stability in U–9 wt. % Mo alloy, Journal of Nuclear Materials 422(1–3) (2012) 77-85.

DOI: 10.1016/j.jnucmat.2011.12.005

Google Scholar

[20] A.J. Clarke, K.D. Clarke, R.J. McCabe, C.T. Necker, P.A. Papin, R.D. Field, A.M. Kelly, T.J. Tucker, R.T. Forsyth, P.O. Dickerson, J.C. Foley, H. Swenson, R.M. Aikin, D.E. Dombrowski, Microstructural evolution of a uranium-10 wt. % molybdenum alloy for nuclear reactor fuels, Journal of Nuclear Materials 465 (2015).

DOI: 10.1016/j.jnucmat.2015.07.004

Google Scholar

[21] R. Newell, Y. Park, A. Mehta, D. Keiser Jr, Y. Sohn, Mechanical properties examined by nanoindentation for selected phases relevant to the development of monolithic uranium-molybdenum metallic fuels, Journal of Nuclear Materials (2017).

DOI: 10.1016/j.jnucmat.2017.02.018

Google Scholar

[22] T. Pedrosa, A. Dos Santos, F. Lameiras, P. Cetlin, W. Ferraz, Phase transitions during artifical ageing of segregated as-cast U-Mo alloys, Journal of Nuclear Materials 457 (2015) 100-117.

DOI: 10.1016/j.jnucmat.2014.11.004

Google Scholar

[23] A. Robinson, G. Chang, D. Keiser Jr, D. Wachs, D. Porter, Irradiation Performance of U-Mo Alloy Based Monolithic, Plate-Type Fuel–Design Selection, INL external report INL/EXT-09-16807 (2009).

DOI: 10.2172/968567

Google Scholar

[24] M.I. Mirandou, S.N. Balart, M. Ortiz, M.S. Granovsky, Characterization of the reaction layer in U–7wt%Mo/Al diffusion couples, Journal of Nuclear Materials 323(1) (2003) 29-35.

DOI: 10.1016/j.jnucmat.2003.07.006

Google Scholar

[25] H. Palancher, P. Martin, V. Nassif, R. Tucoulou, O. Proux, J. -L. Hazemann, O. Tougait, E. Lahera, F. Mazaudier, C. Valot, S. Dubois, Evidence for the presence of U-Mo-Al ternary compounds in the U-Mo/Al interaction layer grown by thermal annealing: a coupled micro X-ray diffraction and micro X-ray absorption spectroscopy study, Journal of Applied Crystallography 40(6) (2007).

DOI: 10.1107/s0021889807040010

Google Scholar

[26] D.D. Keiser Jr, J.F. Jue, N.E. Woolstenhulme, A. Ewh, Potential annealing treatments for tailoring the starting microstructure of low-enriched U–Mo dispersion fuels to optimize performance during irradiation, Journal of Nuclear Materials 419(1–3) (2011).

DOI: 10.1016/j.jnucmat.2011.08.039

Google Scholar

[27] F. Mazaudier, C. Proye, F. Hodaj, Further insight into mechanisms of solid-state interactions in UMo/Al system, Journal of nuclear materials 377(3) (2008) 476-485.

DOI: 10.1016/j.jnucmat.2008.04.016

Google Scholar

[28] S. Van den Berghe, W. Van Renterghem, A. Leenaers, Transmission electron microscopy investigation of irradiated U–7 wt% Mo dispersion fuel, Journal of Nuclear Materials 375(3) (2008) 340-346.

DOI: 10.1016/j.jnucmat.2007.12.006

Google Scholar

[29] E. Perez, D.D. Keiser Jr, Y.H. Sohn, Phase constituents and microstructure of interaction layer formed in U-Mo alloys vs Al diffusion couples annealed at 873 K (600°C), Metallurgical and Materials Transactions A 42(10) (2011) 3071-3083.

DOI: 10.1007/s11661-011-0733-9

Google Scholar

[30] E. Perez, N. Hotaling, A. Ewh, D.D. Keiser Jr, Y.H. Sohn, Growth Kinetics of intermetallic phases in U-Mo vs. Al alloy diffusion couples annealed at 550°C, Defect and Diffusion Forum, Trans Tech Publ, 2007, pp.149-156.

DOI: 10.4028/www.scientific.net/ddf.266.149

Google Scholar

[31] A. Leenaers, S. Van den Berghe, E. Koonen, P. Jacquet, C. Jarousse, B. Guigon, A. Ballagny, L. Sannen, Microstructure of U3Si2 fuel plates submitted to a high heat flux, Journal of Nuclear Materials 327(2–3) (2004) 121-129.

DOI: 10.1016/j.jnucmat.2004.01.025

Google Scholar

[32] D.D. Keiser Jr, J. Gan, J.F. Jue, B.D. Miller, C.R. Clark, Electron microscopy characterization of an as-fabricated research reactor fuel plate comprised of U–7Mo particles dispersed in an Al–2Si alloy matrix, Materials Characterization 61(11) (2010).

DOI: 10.1016/j.matchar.2010.07.010

Google Scholar

[33] J. Gan, D.D. Keiser Jr, D.M. Wachs, A.B. Robinson, B.D. Miller, T.R. Allen, Transmission electron microscopy characterization of irradiated U–7Mo/Al–2Si dispersion fuel, Journal of Nuclear Materials 396(2–3) (2010) 234-239.

DOI: 10.1016/j.jnucmat.2009.11.015

Google Scholar

[34] E. Perez, Y.H. Sohn, D.D. Keiser Jr, Role of Si on the diffusional interactions between U-Mo and Al-Si alloys at 823 K (550°C), Metallurgical and Materials Transactions A 44(1) (2013) 584-595.

DOI: 10.1007/s11661-012-1368-1

Google Scholar

[35] J.M. Park, H.J. Ryu, S.J. Oh, D.B. Lee, C.K. Kim, Y.S. Kim, G.L. Hofman, Effect of Si and Zr on the interdiffusion of U–Mo alloy and Al, Journal of Nuclear Materials 374(3) (2008) 422-430.

DOI: 10.1016/j.jnucmat.2007.09.059

Google Scholar

[36] X. Zhang, Y.F. Cui, G.L. Xu, W.J. Zhu, H.S. Liu, B.Y. Yin, Z.P. Jin, Thermodynamic assessment of the U-Mo-Al system, Journal of Nuclear Materials 402(1) (2010) 15-24.

DOI: 10.1016/j.jnucmat.2010.04.018

Google Scholar

[37] B.N. Briggs, W.H. Friske, Development of niobium diffusion barriers for aluminum-clad uranium alloy fuel elements, ; Atomics International. Div. of North American Aviation, Inc., Canoga Park, Calif., 1963, p. Medium: ED; Size: Pages: 50.

DOI: 10.2172/4710214

Google Scholar

[38] J. Buddery, M. Clark, R. Pearce, J. Stobbs, The development and properties of an oxidation-resistant coating for uranium, Journal of Nuclear Materials 13(2) (1964) 169-181.

DOI: 10.1016/0022-3115(64)90038-8

Google Scholar

[39] K. Huang, C.C. Kammerer, D.D. Keiser Jr, Y.H. Sohn, Diffusion barrier selection from refractory metals (Zr, Mo and Nb) via interdiffusion investigation for U-Mo RERTR fuel alloy, Journal of Phase Equilibria and Diffusion 35(2) (2013) 146-156.

DOI: 10.1007/s11669-013-0270-x

Google Scholar

[40] G.A. Moore, M.C. Marshall, Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process, ; Idaho National Laboratory (INL), 2010, p. Medium: ED.

DOI: 10.2172/978364

Google Scholar

[41] E. Perez, B. Yao, D.D. Keiser Jr, Y.H. Sohn, Microstructural analysis of as-processed U–10 wt. % Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier, Journal of Nuclear Materials 402(1) (2010) 8-14.

DOI: 10.1016/j.jnucmat.2010.04.016

Google Scholar

[42] Y. Park, N. Eriksson, D.D. Keiser Jr, J.F. Jue, B. Rabin, G. Moore, Y.H. Sohn, Microstructural anomalies in hot-isostatic pressed U–10 wt. % Mo fuel plates with Zr diffusion barrier, Materials Characterization 103 (2015) 50-57.

DOI: 10.1016/j.matchar.2015.03.015

Google Scholar

[43] K. Huang, Y. Park, D.D. Keiser Jr, Y.H. Sohn, Interdiffusion between Zr diffusion barrier and U-Mo alloy, Journal of Phase Equilibria and Diffusion 33(6) (2012) 443-449.

DOI: 10.1007/s11669-012-0106-0

Google Scholar

[44] Y. Park, D.D. Keiser Jr, Y.H. Sohn, Interdiffusion and reactions between U–Mo and Zr at 650°C as a function of time, Journal of Nuclear Materials 456 (2015) 351-358.

DOI: 10.1016/j.jnucmat.2014.09.040

Google Scholar

[45] R.I. Sheldon, D.E. Peterson, The U-Zr (Uranium-Zirconium) system, Bulletin of Alloy Phase Diagrams 10(2) (1989) 165-171.

DOI: 10.1007/bf02881432

Google Scholar

[46] J. Dickson, L. Zhou, A. Paz y Puente, M. Fu, D.D. Keiser Jr, Y.H. Sohn, Interdiffusion and reaction between Zr and Al alloys from 425° to 625°C, Intermetallics 49 (2014) 154-162.

DOI: 10.1016/j.intermet.2013.12.012

Google Scholar

[47] A. Mehta, L. Zhou, E. Schulz, D.D. Keiser Jr, J.I. Cole, Y. Sohn, Microstructural characterization of AA6061 vs. AA6061 HIP bonded cladding interface, Unpublished article.

DOI: 10.1007/s11669-018-0629-0

Google Scholar

[48] J. Zhang, Z. Fan, Y. Wang, B. Zhou, Equilibrium pseudobinary Al–Mg2Si phase diagram, Materials Science and Technology 17(5) (2001) 494-496.

DOI: 10.1179/026708301101510311

Google Scholar