[1]
C. Sari, U. Benedict, H. Blank, A study of the ternary system UO2-PuO2-Pu2O3, J. Nucl. Mater. 35 (1970) 267-277.
Google Scholar
[2]
P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, John Wiley and Sons, New York (1972).
Google Scholar
[3]
M. Kato and K. Konashi, Lattice parameters of (U, Pu, Am, Np)O2-x, J. Nucl. Mater. 385 (2009) 117–121.
DOI: 10.1016/j.jnucmat.2008.09.037
Google Scholar
[4]
A. Komeno, M. Kato, S. Hirooka, and T. Sunaoshi, Oxygen potentials of PuO2-x, IOP Conf. Series: Materials Science and Engineering 9 (2010) 012016.
Google Scholar
[5]
M. Kato, M. Watanabe, T. Matsumoto, S. Hirooka, M. Akashi, Oxygen potentials, oxygen diffusion coefficients and defect equilibria of nonstoichiometric (U, Pu)O2±x, in press, 10. 1016/j. jnucmat. 2017. 01. 056.
DOI: 10.1016/j.jnucmat.2017.01.056
Google Scholar
[6]
R.E. Woodley, Oxygen potentials of plutonia and urania-plutonia solid solutions, J. Nucl. Mater. 96(1981) 5-14.
DOI: 10.1016/0022-3115(81)90212-9
Google Scholar
[7]
G.C. Swanson, Report, LA-6083-T (1975).
Google Scholar
[8]
T.L. Markin, R.J. Bones, E.R. Gardner, U.K.E.A. Report, AERE-R 4724 (1964).
Google Scholar
[9]
L.M. Atlas, G.J. Schlehman, IAEA-SM-66/79 (1966) 407.
Google Scholar
[10]
K. Naito, T. Tsuji, K. Ouchi, T. Tahata, T. Yamashita, H. Tagawa, Electrical conductivity anomaly in near stoichiometric plutonium dioxide, J. Nucl. Mater. 95 (1980) 181-184.
DOI: 10.1016/0022-3115(80)90092-6
Google Scholar
[11]
L.M. Atlas and G.J. Schlehman, in: Thermodynamics, Vol. II (IAEA, Vienna, 1966) p.407.
Google Scholar
[12]
P. Chereau and J.F. Wadier, Mesures de resistivite et de cinetique d'oxydation dans PuO2−x, J. Nucl. Mater. 46 (1973) 1.
DOI: 10.1016/0022-3115(73)90116-5
Google Scholar
[13]
A. S. Bayoglu and R. Lorenzelli, Etude de la diffusion chimique de l'oxygene dans PuO2−x par dilatometrie et thermogravimetrie, J. Nucl. Mater. 82 (1979) 403-410.
DOI: 10.1016/0022-3115(79)90022-9
Google Scholar
[14]
M. Kato, T. Uchida, T. Sunaoshi Measurement of oxygen chemical diffusion in PuO2-x and analysis of oxygen diffusion in PuO2-x and (Pu, U)O2-x Phys. Status Solidi C 10, 2 (2013) 189–192.
DOI: 10.1002/pssc.201200454
Google Scholar
[15]
M. Kato and T. Matsumoto, Thermal and Mechanical Properties of UO2 and PuO2, proceeding of 13IEMPT, Seoul, Korea, 23-26 September (2014).
Google Scholar
[16]
M. Kato, Y. Ikusawa, T. Sunaoshi, A. T. Nelson, K. J. McClellan, Thermal expansion measurement of (U, Pu)O2-x in oxygen partial pressure-controlled atmosphere, J. of Nucl. Mater. 469 (2016) 223-227.
DOI: 10.1016/j.jnucmat.2015.11.048
Google Scholar
[17]
M. Kato, T. Uchida, T. Matsumoto, T. Sunaoshi, H. Nakamura, M. Machida, Thermal expansion measurement and heat capacity evaluation of hypo-stoichiometric PuO2. 00 , J. of Nucl. Mater. 451 (2014) 78–81.
DOI: 10.1016/j.jnucmat.2014.03.021
Google Scholar
[18]
T. Uchida, T. Sunaoshi, K. Konashi, M. Kato, Thermal expansion of PuO2, J. Nucl. Mater 452 (2014) 281-284.
DOI: 10.1016/j.jnucmat.2014.05.039
Google Scholar
[19]
T. Yamashita, N. Nitani, T. Tsuji, H. Inagaki, Thermal expansions of NpO 2 and some other actinide dioxides, J. Nucl. Mater 245 (1997) 72-78.
DOI: 10.1016/s0022-3115(96)00750-7
Google Scholar
[20]
I.F. Ferguson, R.S. Street, R.W.M. D'Eye, Harwell Rep. AERE-r, 1960, p.3344.
Google Scholar
[21]
J.A. Fahey, R.P. Turcotte, T.D. Chikalla, J.A. Fahey, R.P. Turcotte, T.D. Chikalla, Thermal Expansion of the Actinide Dioxides, Inorg. Nucl. Chem. Lett. 10 (1974)459-465.
DOI: 10.1016/0020-1650(74)80067-x
Google Scholar
[22]
フォームの始まり J. J Carbajo, G. L Yoder, S. G Popov, V. K Ivanov, A review of the thermophysical properties of MOX and UO2 fuels, J. Nucl. Mater 299, 3 (2001) 181-198.
DOI: 10.1016/s0022-3115(01)00692-4
Google Scholar
[23]
H. Nakamura, M. Machida, M. Kato, First-Principles Calculation of Phonon and Schottky Heat Capacities of Plutonium Dioxide, J. of Phys. Soc. of Jap. 84 (2015) 053602.
DOI: 10.7566/jpsj.84.053602
Google Scholar
[24]
R.J.M. Konings, O. Bebes, The heat capacity of NpO2 at high temperatures: The effect of oxygen Frenkel pair formation, J. Phys. Chem. Solids 74 (2013) 653–655.
DOI: 10.1016/j.jpcs.2012.12.018
Google Scholar
[25]
R.L. Gibby, The effect of plutonium content on the thermal conductivity of (U, Pu)O2 solid solutions, J. Nucl. Mater. 38 2 (1971) 163-177.
DOI: 10.1016/0022-3115(71)90040-7
Google Scholar
[26]
S. Fukushima, et al., Thermal conductivity of stoichiometric (Pu, Nd)O2 and (Pu, Y)O2 solid solutions, J. Nucl. Mater. 114, Issues 2-3, (1983) 260-266.
DOI: 10.1016/0022-3115(83)90265-9
Google Scholar
[27]
C. Cozzo, D. Staicu, J. Somers, A. Fernandez, R.J.M. Konings, Thermal diffusivity and conductivity of thorium-plutonium mixed oxides, J. Nucl. Mater. 416 1-2 (2011) 135-141.
DOI: 10.1016/j.jnucmat.2011.01.109
Google Scholar
[28]
T. Matsumoto, T. Arima, Y. Inagaki, K Idemitsu, M. Kato, K. Morimoto, M. Ogasawara, Thermal conductivity measurement of (Pu1-xAmx)O2 (x=0. 03, 0. 07), J. of Alloys and Comp. 629 (2015) 92–97.
DOI: 10.1016/j.jallcom.2014.11.205
Google Scholar
[29]
H. Nakamura, M. Machida, M. Kato, LDA + U study on plutonium dioxide with spin–orbit couplings, Prog. in Nucl. Sci. and Tech. 2 (2011) 16–19.
DOI: 10.15669/pnst.2.16
Google Scholar
[30]
H. Nakamura, M. Machida, M. Kato, Effect of spin-orbit coupling and strong correlation on paramagnetic insulating state in plutonium dioxide, Phys. Rev. B 82 (2010) 155131.
DOI: 10.1103/physrevb.82.155131
Google Scholar
[31]
Y. Lu , Y. Yang, P. Zhang, Charge states of point defects in plutonium oxide: A first-principles Study, J. Alloys Comp. 649 (2015) 544-552.
DOI: 10.1016/j.jallcom.2015.07.219
Google Scholar
[32]
M. W. D. Cooper, M. J. D. Rushton, R. W. Grimes, A many-body potential approach to modelling the thermomechanical properties of actinide oxides, J. Phys. Condens. Matter 26 (2014) 105401.
DOI: 10.1088/0953-8984/26/10/105401
Google Scholar
[33]
X. Tian, T. Gao, C. Lu, J. Shang, H. Xiao, First principle study of the behavior of helium in plutonium dioxide, Eur. Phys. J. B (2013) 86: 179.
DOI: 10.1140/epjb/e2013-31047-y
Google Scholar
[34]
M. S.D. Read, S. R. Walker, R A. Jackson, Derivation of enhanced potentials for plutonium dioxide and the calculation of lattice and intrinsic defect properties, J. of Nucl. Mater. 448 (2014) 20–25.
DOI: 10.1016/j.jnucmat.2014.01.020
Google Scholar
[35]
M. Freyss, N. Vergnet, T. Petit, Ab initio modeling of the behavior of helium and xenon in actinide dioxide nuclear fuels , J. of Nucl. Mater. 352 (2006) 144–150.
DOI: 10.1016/j.jnucmat.2006.02.048
Google Scholar
[36]
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.
DOI: 10.1103/physrevb.54.11169
Google Scholar
[37]
J. M. Haschke, T. H. Allen, L. A. Morales, Reaction of Plutonium Dioxide with Water: Formation and Properties of PuO2+x, Science 287 5451(2000) 285-287.
DOI: 10.1126/science.287.5451.285
Google Scholar
[38]
G.A. Slack, The Thermal Conductivity of Nonmetallic Crystals, Solid State Physics 34 (1979) 1-71.
Google Scholar
[39]
C.G.S. Pillai, P. Raj, Thermal conductivity of ThO2 and Th0. 98U0. 02O2, J. of Nucl. Mater. 277, 1 (2000) 116-119.
Google Scholar