Defect Chemistry and Basic Properties of Non-Stoichiometric PuO2

Article Preview

Abstract:

The basic properties of PuO2x were reviewed, and the equilibrium defects in PuO2x were evaluated from the experimental data of the oxygen potential and electrical conductivity as well as the Ab-initio calculation results. Consistency among various properties was confirmed, and the mechanistic models for thermal property representations were derived.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-70

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Sari, U. Benedict, H. Blank, A study of the ternary system UO2-PuO2-Pu2O3, J. Nucl. Mater. 35 (1970) 267-277.

Google Scholar

[2] P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, John Wiley and Sons, New York (1972).

Google Scholar

[3] M. Kato and K. Konashi, Lattice parameters of (U, Pu, Am, Np)O2-x, J. Nucl. Mater. 385 (2009) 117–121.

DOI: 10.1016/j.jnucmat.2008.09.037

Google Scholar

[4] A. Komeno, M. Kato, S. Hirooka, and T. Sunaoshi, Oxygen potentials of PuO2-x, IOP Conf. Series: Materials Science and Engineering 9 (2010) 012016.

Google Scholar

[5] M. Kato, M. Watanabe, T. Matsumoto, S. Hirooka, M. Akashi, Oxygen potentials, oxygen diffusion coefficients and defect equilibria of nonstoichiometric (U, Pu)O2±x, in press, 10. 1016/j. jnucmat. 2017. 01. 056.

DOI: 10.1016/j.jnucmat.2017.01.056

Google Scholar

[6] R.E. Woodley, Oxygen potentials of plutonia and urania-plutonia solid solutions, J. Nucl. Mater. 96(1981) 5-14.

DOI: 10.1016/0022-3115(81)90212-9

Google Scholar

[7] G.C. Swanson, Report, LA-6083-T (1975).

Google Scholar

[8] T.L. Markin, R.J. Bones, E.R. Gardner, U.K.E.A. Report, AERE-R 4724 (1964).

Google Scholar

[9] L.M. Atlas, G.J. Schlehman, IAEA-SM-66/79 (1966) 407.

Google Scholar

[10] K. Naito, T. Tsuji, K. Ouchi, T. Tahata, T. Yamashita, H. Tagawa, Electrical conductivity anomaly in near stoichiometric plutonium dioxide, J. Nucl. Mater. 95 (1980) 181-184.

DOI: 10.1016/0022-3115(80)90092-6

Google Scholar

[11] L.M. Atlas and G.J. Schlehman, in: Thermodynamics, Vol. II (IAEA, Vienna, 1966) p.407.

Google Scholar

[12] P. Chereau and J.F. Wadier, Mesures de resistivite et de cinetique d'oxydation dans PuO2−x, J. Nucl. Mater. 46 (1973) 1.

DOI: 10.1016/0022-3115(73)90116-5

Google Scholar

[13] A. S. Bayoglu and R. Lorenzelli, Etude de la diffusion chimique de l'oxygene dans PuO2−x par dilatometrie et thermogravimetrie, J. Nucl. Mater. 82 (1979) 403-410.

DOI: 10.1016/0022-3115(79)90022-9

Google Scholar

[14] M. Kato, T. Uchida, T. Sunaoshi Measurement of oxygen chemical diffusion in PuO2-x and analysis of oxygen diffusion in PuO2-x and (Pu, U)O2-x Phys. Status Solidi C 10, 2 (2013) 189–192.

DOI: 10.1002/pssc.201200454

Google Scholar

[15] M. Kato and T. Matsumoto, Thermal and Mechanical Properties of UO2 and PuO2, proceeding of 13IEMPT, Seoul, Korea, 23-26 September (2014).

Google Scholar

[16] M. Kato, Y. Ikusawa, T. Sunaoshi, A. T. Nelson, K. J. McClellan, Thermal expansion measurement of (U, Pu)O2-x in oxygen partial pressure-controlled atmosphere, J. of Nucl. Mater. 469 (2016) 223-227.

DOI: 10.1016/j.jnucmat.2015.11.048

Google Scholar

[17] M. Kato, T. Uchida, T. Matsumoto, T. Sunaoshi, H. Nakamura, M. Machida, Thermal expansion measurement and heat capacity evaluation of hypo-stoichiometric PuO2. 00 , J. of Nucl. Mater. 451 (2014) 78–81.

DOI: 10.1016/j.jnucmat.2014.03.021

Google Scholar

[18] T. Uchida, T. Sunaoshi, K. Konashi, M. Kato, Thermal expansion of PuO2, J. Nucl. Mater 452 (2014) 281-284.

DOI: 10.1016/j.jnucmat.2014.05.039

Google Scholar

[19] T. Yamashita, N. Nitani, T. Tsuji, H. Inagaki, Thermal expansions of NpO 2 and some other actinide dioxides, J. Nucl. Mater 245 (1997) 72-78.

DOI: 10.1016/s0022-3115(96)00750-7

Google Scholar

[20] I.F. Ferguson, R.S. Street, R.W.M. D'Eye, Harwell Rep. AERE-r, 1960, p.3344.

Google Scholar

[21] J.A. Fahey, R.P. Turcotte, T.D. Chikalla, J.A. Fahey, R.P. Turcotte, T.D. Chikalla, Thermal Expansion of the Actinide Dioxides, Inorg. Nucl. Chem. Lett. 10 (1974)459-465.

DOI: 10.1016/0020-1650(74)80067-x

Google Scholar

[22] フォームの始まり J. J Carbajo, G. L Yoder, S. G Popov, V. K Ivanov, A review of the thermophysical properties of MOX and UO2 fuels, J. Nucl. Mater 299, 3 (2001) 181-198.

DOI: 10.1016/s0022-3115(01)00692-4

Google Scholar

[23] H. Nakamura, M. Machida, M. Kato, First-Principles Calculation of Phonon and Schottky Heat Capacities of Plutonium Dioxide, J. of Phys. Soc. of Jap. 84 (2015) 053602.

DOI: 10.7566/jpsj.84.053602

Google Scholar

[24] R.J.M. Konings, O. Bebes, The heat capacity of NpO2 at high temperatures: The effect of oxygen Frenkel pair formation, J. Phys. Chem. Solids 74 (2013) 653–655.

DOI: 10.1016/j.jpcs.2012.12.018

Google Scholar

[25] R.L. Gibby, The effect of plutonium content on the thermal conductivity of (U, Pu)O2 solid solutions, J. Nucl. Mater. 38 2 (1971) 163-177.

DOI: 10.1016/0022-3115(71)90040-7

Google Scholar

[26] S. Fukushima, et al., Thermal conductivity of stoichiometric (Pu, Nd)O2 and (Pu, Y)O2 solid solutions, J. Nucl. Mater. 114, Issues 2-3, (1983) 260-266.

DOI: 10.1016/0022-3115(83)90265-9

Google Scholar

[27] C. Cozzo, D. Staicu, J. Somers, A. Fernandez, R.J.M. Konings, Thermal diffusivity and conductivity of thorium-plutonium mixed oxides, J. Nucl. Mater. 416 1-2 (2011) 135-141.

DOI: 10.1016/j.jnucmat.2011.01.109

Google Scholar

[28] T. Matsumoto, T. Arima, Y. Inagaki, K Idemitsu, M. Kato, K. Morimoto, M. Ogasawara, Thermal conductivity measurement of (Pu1-xAmx)O2 (x=0. 03, 0. 07), J. of Alloys and Comp. 629 (2015) 92–97.

DOI: 10.1016/j.jallcom.2014.11.205

Google Scholar

[29] H. Nakamura, M. Machida, M. Kato, LDA + U study on plutonium dioxide with spin–orbit couplings, Prog. in Nucl. Sci. and Tech. 2 (2011) 16–19.

DOI: 10.15669/pnst.2.16

Google Scholar

[30] H. Nakamura, M. Machida, M. Kato, Effect of spin-orbit coupling and strong correlation on paramagnetic insulating state in plutonium dioxide, Phys. Rev. B 82 (2010) 155131.

DOI: 10.1103/physrevb.82.155131

Google Scholar

[31] Y. Lu , Y. Yang, P. Zhang, Charge states of point defects in plutonium oxide: A first-principles Study, J. Alloys Comp. 649 (2015) 544-552.

DOI: 10.1016/j.jallcom.2015.07.219

Google Scholar

[32] M. W. D. Cooper, M. J. D. Rushton, R. W. Grimes, A many-body potential approach to modelling the thermomechanical properties of actinide oxides, J. Phys. Condens. Matter 26 (2014) 105401.

DOI: 10.1088/0953-8984/26/10/105401

Google Scholar

[33] X. Tian, T. Gao, C. Lu, J. Shang, H. Xiao, First principle study of the behavior of helium in plutonium dioxide, Eur. Phys. J. B (2013) 86: 179.

DOI: 10.1140/epjb/e2013-31047-y

Google Scholar

[34] M. S.D. Read, S. R. Walker, R A. Jackson, Derivation of enhanced potentials for plutonium dioxide and the calculation of lattice and intrinsic defect properties, J. of Nucl. Mater. 448 (2014) 20–25.

DOI: 10.1016/j.jnucmat.2014.01.020

Google Scholar

[35] M. Freyss, N. Vergnet, T. Petit, Ab initio modeling of the behavior of helium and xenon in actinide dioxide nuclear fuels , J. of Nucl. Mater. 352 (2006) 144–150.

DOI: 10.1016/j.jnucmat.2006.02.048

Google Scholar

[36] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[37] J. M. Haschke, T. H. Allen, L. A. Morales, Reaction of Plutonium Dioxide with Water: Formation and Properties of PuO2+x, Science 287 5451(2000) 285-287.

DOI: 10.1126/science.287.5451.285

Google Scholar

[38] G.A. Slack, The Thermal Conductivity of Nonmetallic Crystals, Solid State Physics 34 (1979) 1-71.

Google Scholar

[39] C.G.S. Pillai, P. Raj, Thermal conductivity of ThO2 and Th0. 98U0. 02O2, J. of Nucl. Mater. 277, 1 (2000) 116-119.

Google Scholar