Multiscale Modeling of Uranium Mononitride: Point Defects Diffusion, Self-Diffusion, Phase Composition

Article Preview

Abstract:

Multiscale computational approach is used to evaluate microscopic parameters for description of nitride nuclear fuel. The results of atomistic simulation and thermodynamic modeling allow to estimate diffusivity and concentrations of point defects at various stoichiometric ratios of UN1+x. The diffusivities of Xe atom were calculated in various equilibrium states. In addition, we obtained the dependence of partial nitrogen pressure on x and temperature. The results of atomistic simulation were used for modeling of nuclear fuel behavior with use of mechanistic fuel codes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-113

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Veshchunov, V.D. Ozrin, V.E. Shestak et al. Development of the mechanistic code MFPR for modelling fission-product release from irradiated UO2 fuel, Nucl. Eng. Des. 236 (2006) 179-200.

DOI: 10.1016/j.nucengdes.2005.08.006

Google Scholar

[2] B. Feng, A. Karahan, M.S. Kazimi, Steady-state fuel behavior modeling of nitride fuels in FRAPCON-EP, J. Nucl. Mater. 427 (2012) 30-38.

DOI: 10.1016/j.jnucmat.2012.04.011

Google Scholar

[3] M.S. Veshchunov, A.V. Boldyrev, A.V. Kuznetsov et al., Development of the advanced mechanistic fuel performance and safety code using the multi-scale approach, Nucl. Eng. Des. 295 (2015) 116-126.

DOI: 10.1016/j.nucengdes.2015.09.035

Google Scholar

[4] T. Barani, E. Bruschi, D. Pizzocri et al., Analysis of transient fission gas behaviour in oxide fuel using BISON and TRANSURANUS, J. Nucl. Mater. 486 (2017) 96-110.

DOI: 10.1016/j.jnucmat.2016.10.051

Google Scholar

[5] M.R. Tonks, D. Andersson, S.R. Phillpot et al., Mechanistic materials modeling for nuclear fuel performance, Annals of nuclear energy 105 (2017) 11-24.

DOI: 10.1016/j.anucene.2017.03.005

Google Scholar

[6] V.J. Tennery, T.G. Godfrey, R.A. Potter, Sintering of UN as a function of temperature and N2 pressure, J. Am. Ceram. Soc. 54 (1971) 327-331.

DOI: 10.1111/j.1151-2916.1971.tb12306.x

Google Scholar

[7] H. Matzke, Science of Advanced LMFBR Fuels: Solid State Physics, Chemistry and Technology of Carbides, Nitrides and Carbonitrides of Uranium and Plutonium, North-Holland, (1986).

Google Scholar

[8] E. Kotomin, Y. Mastrikov, S. Rashkeev, P. Van Uffelen, Implementing first principles calculations of defect migration in a fuel performance code for UN simulations, J. Nucl. Mater. 393 (2009) 292-299.

DOI: 10.1016/j.jnucmat.2009.06.016

Google Scholar

[9] M. Klipfel, P. Van Uffelen, Ab initio modelling of volatile fission products in uranium mononitride, J. Nucl. Mater. 422 (2012) 137.

DOI: 10.1016/j.jnucmat.2011.12.018

Google Scholar

[10] A. Claisse, T. Schuler, D.A. Lopes, P. Olsson, Transport properties in dilute UN(X) solid solutions (X=Xe, Kr), Phys. Rev. B, 94 (2016) 174302.

Google Scholar

[11] A. Yu. Kuksin, S.V. Starikov, D.E. Smirnova, V.I. Tseplyaev, The diffusion of point defects in uranium mononitride: Combination of DFT and atomistic simulation with novel potential, J. All. Comp. 658 (2016) 385-394.

DOI: 10.1016/j.jallcom.2015.10.223

Google Scholar

[12] H. Mehrer, Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer Series in Solid-State Sciences), Springer, (2007).

DOI: 10.1007/978-3-540-71488-0

Google Scholar

[13] Yu.F. Khromov, R.A. Lyutikov, Certain thermodynamic properties of uranium nitride UNy, Atomic Energy 49 (1980) 448-452 (translated from Russian).

DOI: 10.1007/bf01123922

Google Scholar

[14] R. Benz, W.B. Hutchinson, U + N2 reaction layer growth, J. Nucl. Mater. 36 (1970) 135-146.

Google Scholar

[15] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B. 54 (16) (1996) 11169.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[16] H. Tagawa, Phase relations and thermodynamic properties of the uranium-nitrogen system, J. Nucl. Mater. 51 (1974) 78-89.

Google Scholar

[17] S.L. Hayes, J.K. Thomas, K.L. Peddicord, Material property correlations for uranium mononitride: IV. thermodynamic properties, J. Nucl. Mater. 171 (1990) 300-318.

DOI: 10.1016/0022-3115(90)90377-y

Google Scholar

[18] A.Y. Kuksin, D.E. Smirnova, Calculation of diffusion coefficients of defects and ions in UO2, Phys. Solid State 56 (2014) 1214-1223.

DOI: 10.1134/s1063783414060201

Google Scholar

[19] M. Klipfel, V. Di Marcello, A. Schubert et al. Towards a multiscale approach for assessing fission product behaviour in UN, J. Nucl. Mater. 442 (2013) 253-261.

DOI: 10.1016/j.jnucmat.2013.08.056

Google Scholar

[20] J.B. Holt, M.Y. Almassy, Nitrogen diffusion in uranium nitride as measured by alpha particle activation of 15N, J. Am. Ceram. Soc. 52 (1969) 631-635.

DOI: 10.1111/j.1151-2916.1969.tb16064.x

Google Scholar

[21] M.H. Bradbury, H. Matzke, Self-diffusion of plutonium in uranium-plutonium mononitride, J. Nucl. Mater. 75 (1978) 68-76.

DOI: 10.1016/0022-3115(78)90029-6

Google Scholar

[22] T.J. Sturiale, M.A. DeCrescente, Self diffusion of nitrogen in uranium mononitride, Tech. Rept. PWAC-477, Contract At(30-1)-2789; 25 pp., September 1965; pp.1-25.

Google Scholar

[23] D.K. Reimann, D.M. Kroegbr, T.S. Lundy, Cation self-diffusion in UN1+x , J. Nucl. Mater. 38 (1971) 191-196.

DOI: 10.1016/0022-3115(71)90042-0

Google Scholar

[24] H. Matzke, Point defects and transport properties in carbides, Solid State Ionics 12 (1984) 25-45.

DOI: 10.1016/0167-2738(84)90128-0

Google Scholar

[25] P. Brommer, F. Gähler, Effective potentials for quasicrystals from ab-initio data, Phil. Mag. 86 (2006) 753-758.

DOI: 10.1080/14786430500333349

Google Scholar

[26] P. Brommer, A. Kiselev, D. Schopf, P. Beck, J. Roth, H. -R. Trebin, Classical interaction potentials for diverse materials from ab initiodata: a review of potfit, Modell. Simul. Mater. Sci. Eng. 23 (7) (2015) 074002.

DOI: 10.1088/0965-0393/23/7/074002

Google Scholar

[27] J. Melehan, J. Gates, Battelle Memorial Institute, Report No. BMI-1701, (1964).

Google Scholar

[28] N. Oi, Xe-133 diffusion in UN single crystals, Z . Naturforschg 21a (1966) 863-864.

DOI: 10.1515/zna-1966-0641

Google Scholar

[29] H. Blank, in: R.W. Cahn et al. (Eds. ), Materials Science and Technology, vol. 10A, Weinheim, New York, 1994, p.191.

Google Scholar

[30] R. Thetford, M. Mignanelli, The chemistry and physics of modelling nitride fuels for transmutation, J. Nucl. Mater. 320 (2003) 44-53.

DOI: 10.1016/s0022-3115(03)00170-3

Google Scholar

[31] V.D. Ozrin, A model for evolution of oxygen potential and stoichiometry deviation in irradiated UO2 fuel, J. Nucl. Mater. 419 (2011) 371-377.

DOI: 10.1016/j.jnucmat.2011.06.042

Google Scholar

[32] D. Yu. Lubimov, A.V. Androsov, G.S. Bulatov, K.N. Gedgovd, Thermodynamic modeling of the phase composition of mixed uranium-plutonium mononitride under fast-neutron irradiation to burn-up 80 GW days/ton and temperature 900–1400 K", Atomic Energy 114 (2013).

DOI: 10.1007/s10512-013-9704-0

Google Scholar

[33] M.S. Veshchunov, R. Dubourg, V.D. Ozrin, V.E. Shestak, V.I. Tarasov, Mechanistic modelling of urania fuel evolution and fission product migration during irradiation and heating, J. Nucl. Mater. 362 (2007) 327-335.

DOI: 10.1016/j.jnucmat.2007.01.081

Google Scholar

[34] Y. Arai, A. Maeda, K. Shiozawa, T. Ohmichi, Chemical forms of solid fission products in the irradiated uranium-plutonium mixed nitride fuel, J. Nucl. Mater. 210 (1994) 161-166.

DOI: 10.1016/0022-3115(94)90233-x

Google Scholar

[35] H. Tagawa, Equilibrium nitrogen pressures and thermodynamic properties of uranium sesquinitride, J. Nucl. Mater. 41 (1971) 313-319.

DOI: 10.1016/0022-3115(71)90168-1

Google Scholar

[36] P. -Y. Chevalier, E. Fischer, B. Cheynet, Thermodynamic modelling of the N–U system, J. Nucl. Mater. 280 (2000) 136-150.

Google Scholar